Skip to:Content
|
Bottom
Cover image for Controlled growth of nanomaterials
Title:
Controlled growth of nanomaterials
Personal Author:
Publication Information:
Singapore : World Scientific Publishing Company, 2007
ISBN:
9789812567284

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010149982 TA418.9.N35 Z42 2007 Open Access Book Book
Searching...
Searching...
30000003500596 TA418.9.N35 Z42 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

This book introduces the latest methods for the controlled growth of nanomaterial systems. The coverage includes simple and complex nanomaterial systems, ordered nanostructures and complex nanostructure arrays, and the essential conditions for the controlled growth of nanostructures with different morphologies, sizes, compositions, and microstructures. The book also discusses the dynamics of controlled growth and thermodynamic characteristics of two-dimensional nanorestricted systems. The authors introduce various novel synthesis methods for nanomaterials and nanostructures, such as hierarchical growth, heterostructures growth, doping growth and some developing template synthesis methods. In addition to discussing applications, the book reviews developing trends in nanomaterials and nanostructures.


Table of Contents

1 Introductionp. 1
Bibliographyp. 8
2 Controlled Growth of Nanowires and Nanobeltsp. 11
2.1 Introductionp. 13
2.2 Oxides nanowires and nanobeltsp. 14
2.2.1 ZnOp. 14
2.2.2 SnO[subscript 2]p. 19
2.2.3 In[subscript 2]O[subscript 3]p. 23
2.2.4 MgOp. 26
2.2.4.1 Controlled growth of MgO nanostructuresp. 27
2.2.4.2 Direct observation of the growth process of MgO nanoflowersp. 29
2.2.5 Al[subscript 2]O[subscript 3]p. 32
2.3 Sulfides nanowires and nanobeltsp. 37
2.3.1 ZnSp. 37
2.3.2 CdSp. 42
2.4 Doping of nanowires and nanobeltsp. 47
2.4.1 S-doped ZnO nanowiresp. 47
2.4.2 Ce-doped ZnO nanostructuresp. 48
2.4.3 Sn-doped ZnO nanobeltsp. 51
2.4.4 Mn-doped ZnS nanobeltsp. 53
Bibliographyp. 56
3 Design and Synthesis of One-Dimensional Heterostructuresp. 67
3.1 Introductionp. 69
3.2 Synthesis of one-dimensional heterostructuresp. 70
3.2.1 Coaxial core/shell structure (nanocable) and biaxial nanowiresp. 70
3.2.2 Heterojunction and superlattice nanowire structurep. 77
3.2.3 Complex branch structure (hierarchical structure)p. 82
3.3 Concluding remarksp. 96
Bibliographyp. 97
4 Quasi-Zero Dimensional Nanoarraysp. 101
4.1 Synthesis of two-dimensional colloid crystalsp. 103
4.1.1 Drop coatingp. 105
4.1.2 Spin-coatingp. 107
4.1.3 Perpendicular withdrawingp. 108
4.2 Ordered nanoarrays based on two-dimensional colloidal crystal templatesp. 110
4.2.1 Ordered pore arraysp. 112
4.2.1.1 ZnO-ordered pore arrays based on electro-deposition and colloidal monolayersp. 112
4.2.1.2 Au-ordered through-pore arrays based on electro-deposition and colloidal monolayersp. 120
4.2.1.3 SnO[subscript 2] mono- and multi-layered nanostructured porous films based on solution-dipping templatesp. 128
4.2.1.4 Fe[subscript 2]O[subscript 3]-ordered pore arrays based on solution-dipping templates and colloidal monolayerp. 133
4.2.1.5 In[subscript 2]O[subscript 3]-ordered pore arrays based on solution-dipping templates and colloidal monolayersp. 141
4.2.2 Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore filmsp. 147
4.2.3 Au nanoparticle arraysp. 153
Bibliographyp. 159
5 Nanoarray Synthesis and Characterization based on Alumina Templatesp. 165
5.1 Preparation techniques of ordered channel AAM (anodization alumina membrane) templatesp. 167
5.1.1 Preparation of ordered channel AAM templatesp. 168
5.1.2 Structure and characterization of ordered channel AAM templatesp. 170
5.1.3 Exploration of ordered channel formation mechanismp. 171
5.2 Synthesis and characterization of ordered nanoarraysp. 174
5.2.1 Ordered nanoarrays of elementsp. 175
5.2.1.1 Ordered nanoarrays of metal nanowires and nanotubes (Pb, Ag, Cu, Au)p. 175
5.2.1.2 Ordered nanoarrays of semimetal nanowires and nanotubesp. 192
5.2.1.3 Ordered nanoarrays of Sb nanowires and nanotubesp. 206
5.2.1.4 Ordered nanoarrays of semiconductor nanowires and nanotubesp. 210
5.2.1.5 Ordered nanoarrays of carbon nanotubesp. 214
5.2.2 Ordered nanoarrays of binary compound nanowiresp. 226
5.2.2.1 Ordered nanoarrays of alloy nanowiresp. 226
5.2.2.2 Ordered nanoarrays of oxide nanowires and nanotubesp. 232
5.2.2.3 Ordered nanoarrays of sulphide, selenide, telluride and ionide nanowiresp. 247
5.2.3 Ordered nanoarrays of ternary compound nanowiresp. 268
5.2.3.1 Co-Ni-P alloy nanoarraysp. 268
5.2.3.2 Ni-W-P alloy nanowire arraysp. 271
Bibliographyp. 275
6 Controlled Growth of Carbon Nanotubesp. 287
6.1 Introductionp. 289
6.2 Preparation, morphologies and structures of Small diameter carbon nantubes (CNTs)p. 291
6.2.1 Multi-walled carbon nanotubes (MWNTs)p. 292
6.2.2 Single-walled carbon nanotubes (SWNTs)p. 295
6.2.3 Discussion and analysisp. 295
6.3 Very long carbon nanotubes and continuous carbon nanotube yarns (fibers)p. 300
6.3.1 Very long carbon nanotubesp. 301
6.3.2 Spinning continuous carbon nanotube yarns (fibers)p. 304
6.4 Controlled synthesis of single-walled carbon nanotubesp. 306
6.4.1 Preparation of pure single-walled carbon nanotubesp. 307
6.4.2 Direct synthesis of a macroscale single-walled carbon nanotubes non-woven materialp. 312
6.4.3 Synthesis of random networks of single-walled carbon nanotubesp. 316
6.5 Synthesis of double-walled carbon nanotubes (DWNTs)p. 319
Bibliographyp. 323
7 Synthesis of Inorganic Non-carbon Nanotubesp. 327
7.1 Introductionp. 329
7.2 Synthesis of inorganic nanotubesp. 330
7.2.1 Inorganic nanotubes based on two-dimensional structuresp. 331
7.2.1.1 Inorganic nanotubes based on graphite (carbon nanotubes)p. 331
7.2.1.2 Inorganic nanotubes based on transition metal chalcogenides and halidesp. 331
7.2.1.3 Inorganic nanotubes based on boron nitride and the derivativesp. 339
7.2.1.4 Inorganic nanotubes based on rare earth and transition metal oxides and their derivativesp. 340
7.2.2 Inorganic nanotubes based on quasi-two-dimensional structuresp. 342
7.2.3 Inorganic nanotubes based on three-dimensional structuresp. 350
7.2.4 Formation mechanisms of inorganic nanotubesp. 355
7.3 Concluding remarksp. 360
Bibliographyp. 360
8 Novel Properties of Nanomaterialsp. 367
8.1 Introductionp. 369
8.2 Polarization characteristics of metal nanowire microarrays embedded in anodic alumina membrane templatesp. 369
8.2.1 Introductionp. 369
8.2.2 Optical measurementp. 370
8.2.3 Polarization characteristicsp. 371
8.2.3.1 Cu/AAMp. 371
8.2.3.2 Ag/AAMp. 374
8.2.3.3 Pb/AAMp. 375
8.2.4 Theoretical calculationp. 376
8.2.4.1 Theory modelp. 377
8.2.4.2 Numerical simulationp. 380
8.2.5 Conclusionp. 388
8.3 Electronic and magnetic properties of Bi-based nanowire arraysp. 388
8.3.1 Bi nanowire arraysp. 389
8.3.2 Bi-Bi homogeneous nanowire junctionp. 391
8.3.3 Y-segment Bi nanowire arrayp. 392
8.3.4 Bi-Sb segment nanowire junctionp. 394
8.4 Thermal expansion properties of nanowire arraysp. 395
8.4.1 AgI nanowire arraysp. 395
8.4.2 Bi nanowire arraysp. 398
8.4.3 Cu nanowire arraysp. 401
Bibliographyp. 403
9 Applicationsp. 407
9.1 Introductionp. 409
9.2 Sensorsp. 409
9.2.1 SnO[subscript 2] gas sensorsp. 409
9.2.2 Biosensorsp. 420
9.2.2.1 Nanodevices for electrical detection of single virusesp. 420
9.2.2.2 Nanoelectromechanical devices for detection of virusesp. 426
9.2.2.3 Biological magnetic sensorsp. 431
9.2.2.4 Biotin-modified Si nanowire nanosensors for detection of protein bindingp. 435
9.2.2.5 Bio-conjugated nanoparticles for rapid detection of single bacterial cellp. 438
9.2.2.6 Near-infrared optical sensors based on single-walled carbon nanotubesp. 440
9.2.3 Chemical sensorsp. 442
9.3 Field emission of carbon nanotubes and its applicationp. 445
9.4 Light polarizationp. 448
9.5 Light-bulb filaments made of carbon nanotube yarnsp. 453
9.6 Electronic and optoelectronic nanoscale devicesp. 453
Bibliographyp. 457
Indexp. 463
Go to:Top of Page