Cover image for Nanocomposite science and technology
Title:
Nanocomposite science and technology
Personal Author:
Publication Information:
New York,NY : Wiley-VCH, 2003
ISBN:
9783527303595

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010080096 TA418.9.C6 A32 2003 Open Access Book Book
Searching...
Searching...
30000010076607 TA418.9.C6 A32 2003 Open Access Book Book
Searching...
Searching...
30000010076606 TA418.9.C6 A32 2003 Unknown 1:CHECKING
Searching...

On Order

Summary

Summary

In recent years, nanocomposites have captured and held the attention and imagination of scientists and engineers alike. Based on the simple premise that by using a wide range of building blocks with dimensions in the nanosize region, it is possible to design and create new materials with unprecedented flexibility and improvements in their physical properties.
This book contains the essence of this emerging technology, the underlying science and motivation behind the design of these structures and the future, particularly from the perspective of applications. It is intended to be a reference handbook for future scientists and hence carries the basic science and the fundamental engineering principles that lead to the fabrication and property evaluation of nanocomposite materials in different areas of materials science and technology.


Author Notes

Pulickel M. Ajayan is Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute
Linda S. Schadler is Associate Professor at Rensselaer Polytechnic Institute
Paul V. Braun received PhD in Materials Science and Engineering from the University of Illinois at Urbana-Champaign in 1998. Following a one year post-doctoral appointment at Bell Labs, Lucent Technologies, he joined the faculty at the University of Illinois at U-C in 1999 as an assistant professor of Materials Science and Engineering


Table of Contents

Pulickel M. AjayanLinda S. SchadlerPaul V. BraunCatalin Picu and Pawel Keblinski
1 Bulk Metal and Ceramics Nanocompositesp. 1
1.1 Introductionp. 1
1.2 Ceramic/Metal Nanocompositesp. 3
1.2.1 Nanocomposites by Mechanical Alloyingp. 6
1.2.2 Nanocomposites from SolGel Synthesisp. 8
1.2.3 Nanocomposites by Thermal Spray Synthesisp. 11
1.3 Metal Matrix Nanocompositesp. 14
1.4 Bulk Ceramic Nanocomposites for Desired Mechanical Propertiesp. 18
1.5 Thin-Film Nanocomposites: Multilayer and Granular Filmsp. 23
1.6 Nanocomposites for Hard Coatingsp. 24
1.7 Carbon Nanotube-Based Nanocompositesp. 31
1.8 Functional Low-Dimensional Nanocompositesp. 35
1.8.1 Encapsulated Composite Nanosystemsp. 36
1.8.2 Applications of Nanocomposite Wiresp. 44
1.8.3 Applications of Nanocomposite Particlesp. 45
1.9 Inorganic Nanocomposites for Optical Applicationsp. 46
1.10 Inorganic Nanocomposites for Electrical Applicationsp. 49
1.11 Nanoporous Structures and Membranes: Other Nanocompositesp. 53
1.12 Nanocomposites for Magnetic Applicationsp. 57
1.12.1 Particle-Dispersed Magnetic Nanocompositesp. 57
1.12.2 Magnetic Multilayer Nanocompositesp. 59
1.12.2.1 Microstructure and Thermal Stability of Layered Magnetic Nanocompositesp. 59
1.12.2.2 Media Materialsp. 61
1.13 Nanocomposite Structures having Miscellaneous Propertiesp. 64
1.14 Concluding Remarks on Metal/Ceramic Nanocompositesp. 69
2 Polymer-based and Polymer-filled Nanocompositesp. 77
2.1 Introductionp. 77
2.2 Nanoscale Fillersp. 80
2.2.1 Nanofiber or Nanotube Fillersp. 80
2.2.1.1 Carbon Nanotubesp. 80
2.2.1.2 Nanotube Processingp. 85
2.2.1.3 Purityp. 88
2.2.1.4 Other Nanotubesp. 89
2.2.2 Plate-like Nanofillersp. 90
2.2.3 Equi-axed Nanoparticle Fillersp. 93
2.3 Inorganic FillerPolymer Interfacesp. 96
2.4 Processing of Polymer Nanocompositesp. 100
2.4.1 Nanotube/Polymer Compositesp. 100
2.4.2 Layered FillerPolymer Composite Processingp. 103
2.4.2.1 Polyamide Matricesp. 107
2.4.2.2 Polyimide Matricesp. 107
2.4.2.3 Polypropylene and Polyethylene Matricesp. 108
2.4.2.4 Liquid-Crystal Matricesp. 108
2.4.2.5 Polymethylmethacrylate/Polystyrene Matricesp. 108
2.4.2.6 Epoxy and Polyurethane Matricesp. 109
2.4.2.7 Polyelectrolyte Matricesp. 110
2.4.2.8 Rubber Matricesp. 110
2.4.2.9 Othersp. 111
2.4.3 Nanoparticle/Polymer Composite Processingp. 111
2.4.3.1 Direct Mixingp. 111
2.4.3.2 Solution Mixingp. 112
2.4.3.3 In-Situ Polymerizationp. 112
2.4.3.4 In-Situ Particle Processing Ceramic/Polymer Compositesp. 112
2.4.3.5 In-Situ Particle Processing Metal/Polymer Nanocompositesp. 114
2.4.4 Modification of Interfacesp. 117
2.4.4.1 Modification of Nanotubesp. 117
2.4.4.2 Modification of Equi-axed Nanoparticlesp. 118
2.4.4.3 Small-Molecule Attachmentp. 118
2.4.4.4 Polymer Coatingsp. 119
2.4.4.5 Inorganic Coatingsp. 121
2.5 Properties of Compositesp. 122
2.5.1 Mechanical Propertiesp. 122
2.5.1.1 Modulus and the Load-Carrying Capability of Nanofillersp. 122
2.5.1.2 Failure Stress and Strain Toughnessp. 127
2.5.1.3 Glass Transition and Relaxation Behaviorp. 131
2.5.1.4 Abrasion and Wear Resistancep. 132
2.5.2 Permeabilityp. 133
2.5.3 Dimensional Stabilityp. 135
2.5.4 Thermal Stability and Flammabilityp. 136
2.5.5 Electrical and Optical Propertiesp. 138
2.5.5.1 Resistivity, Permittivity, and Breakdown Strengthp. 138
2.5.5.2 Optical Clarityp. 140
2.5.5.3 Refractive Index Controlp. 141
2.5.5.4 Light-Emitting Devicesp. 141
2.5.5.5 Other Optical Activityp. 142
2.6 Summaryp. 144
3 Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocompositesp. 155
3.1 Introductionp. 155
3.2 Natural Nanocomposite Materialsp. 157
3.2.1 Biologically Synthesized Nanoparticlesp. 159
3.2.2 Biologically Synthesized Nanostructuresp. 160
3.3 Biologically Derived Synthetic Nanocompositesp. 165
3.3.1 Protein-Based Nanostructure Formationp. 165
3.3.2 DNA-Templated Nanostructure Formationp. 167
3.3.3 Protein Assemblyp. 169
3.4 Biologically Inspired Nanocompositesp. 171
3.4.1 Lyotropic Liquid-Crystal Templatingp. 178
3.4.2 Liquid-Crystal Templating of Thin Filmsp. 194
3.4.3 Block-Copolymer Templatingp. 195
3.4.4 Colloidal Templatingp. 197
3.5 Summaryp. 207
4 Modeling of Nanocompositesp. 215
4.1 Introduction: The Need For Modelingp. 215
4.2 Current Conceptual Frameworksp. 216
4.3 Multiscale Modelingp. 217
4.4 Multiphysics Aspectsp. 220
4.5 Validationp. 221
Indexp. 223