Cover image for Seabed fluid flow : the impact of geology, biology and the marine environment
Title:
Seabed fluid flow : the impact of geology, biology and the marine environment
Personal Author:
Publication Information:
Cambridge, UK : Cambridge Univ Pr., 2007
ISBN:
9780521819503
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010148306 GC87 J82 2007 Open Access Book Book
Searching...
Searching...
30000010156499 GC87 J82 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Seabed fluid flow involves the flow of gases and liquids through the seabed. Such fluids have been found to leak through the seabed into the marine environment in seas and oceans around the world - from the coasts to deep ocean trenches. This geological phenomenon has widespread implications for the sub-seabed, seabed, and marine environments. Seabed fluid flow affects seabed morphology, mineralization, and benthic ecology. Natural fluid emissions also have a significant impact on the composition of the oceans and atmosphere; and gas hydrates and hydrothermal minerals are potential future resources. This book describes seabed fluid flow features and processes, and demonstrates their importance to human activities and natural environments. It is targeted at research scientists and professionals with interests in the marine environment. Colour versions of many of the illustrations, and additional material - most notably feature location maps - can be found at www.cambridge.org/9780521819503.


Reviews 1

Choice Review

Judd and Hovland, both geologists, discuss the flow of gases and liquids through the seabed and into the marine environment. This book is supported by a Web site that contains additional material, such as color photographs and location maps. There are 11 chapters, an extensive list of references, and a 33-page subject and geographic index. The volume is profusely illustrated with black-and-white photographs and graphs. The chapters include an introduction to seabed fluid flow (chapter 1) and a survey of global observations on a region-by-region basis (chapter 3, "Seabed Fluid Flow around the World"). Chapter 4 places the varied geographic locations into the context of oceanographic and tectonic settings, and chapter 5 carries this one step further in an examination of the nature and origins of flowing fluids. Chapters 6-9 evaluate such diverse topics as seabed fluid flow and biology (chapter 8) and mineral precipitation (chapter 9). The final two chapters discuss the impacts of seabed fluid flow on the hydrosphere and atmosphere and the implications for humankind. For research scientists involved in the study of the marine environment and in exploration of the seabed for mineral resources. Summing Up: Recommended. Graduate students through professionals. J. T. Andrews University of Colorado at Boulder


Table of Contents

Prefacep. xi
Acknowledgementsp. xii
Note on the accompanying websitep. xiii
List of maps on the accompanying websitep. xiv
List of contributed presentations on the accompanying websitep. xv
1 Introduction to seabed fluid flowp. 1
2 Pockmarks, shallow gas, and seeps: an initial appraisalp. 7
2.1 The Scotian Shelf: the early yearsp. 7
2.2 North Sea pockmarksp. 8
2.2.1 History of discoveryp. 9
2.2.2 Pockmark distributionp. 10
2.2.3 Pockmark size and densityp. 10
2.2.4 Pockmark morphologyp. 11
2.2.5 Evidence of gasp. 15
2.3 Detailed surveys of North Sea pockmarks and seepsp. 18
2.3.1 The South Fladen Pockmark Study Areap. 18
2.3.2 Tommeliten: Norwegian Block 1/9p. 25
2.3.3 Norwegian Block 25/7p. 30
2.3.4 The Holene: Norwegian Block 24/9p. 33
2.3.5 The Norwegian Trenchp. 36
2.3.6 Gullfaksp. 36
2.3.7 Giant pockmarks: UK Block 15/25p. 41
2.4 Conclusionsp. 44
3 Seabed fluid flow around the worldp. 45
3.1 Introductionp. 45
3.2 The eastern Arcticp. 45
3.2.1 The Barents Seap. 45
3.2.2 Hakon Mosby Mud Volcanop. 47
3.3 Scandinaviap. 49
3.3.1 Fjords in northern Norwayp. 49
3.3.2 The Norwegian Seap. 50
3.3.3 The Skagerrakp. 52
3.3.4 The Kattegatp. 52
3.4 The Baltic Seap. 56
3.4.1 Eckernforde Bayp. 56
3.4.2 Stockholm Archipelago, Swedenp. 58
3.5 Around the British Islesp. 59
3.5.1 Pockmarks, domes, and seepsp. 60
3.5.2 'Freak' sandwavesp. 60
3.5.3 Methane-derived authigenic carbonatep. 62
3.5.4 The Atlantic Marginp. 62
3.6 Iberiap. 66
3.6.1 The Rias of Galicia, northwest Spainp. 66
3.6.2 Gulf of Cadizp. 67
3.6.3 Ibizap. 69
3.7 Africap. 69
3.7.1 The Niger Delta and Fanp. 69
3.7.2 The continental slope of West Africap. 70
3.8 The Mid-Atlantic Ridgep. 72
3.9 The Adriatic Seap. 72
3.9.1 Seeps and carbonates of the northern Adriaticp. 73
3.9.2 Pockmarks, seeps, and mud diapirs in the central Adriaticp. 73
3.10 The eastern Mediterraneanp. 74
3.10.1 Offshore Greecep. 75
3.10.2 Mediterranean Ridgep. 76
3.10.3 The Anaximander Mountainsp. 79
3.10.4 Eratosthenes Seamountp. 79
3.10.5 Nile Delta and Fanp. 79
3.11 The Black Seap. 81
3.11.1 Turkish Coastp. 81
3.11.2 Offshore Bulgariap. 81
3.11.3 Northwestern Black Seap. 81
3.11.4 Central and northern Black Seap. 83
3.11.5 The 'underwater swamps' of the east Black Sea abyssal plainp. 84
3.11.6 Offshore Georgiap. 85
3.12 Inland seas of Eurasiap. 85
3.12.1 The Caspian Seap. 85
3.12.2 Lake Baikalp. 86
3.13 The Red Seap. 87
3.14 The Arabian Gulfp. 88
3.14.1 Settingp. 88
3.14.2 Seabed featuresp. 88
3.14.3 Strait of Hormuzp. 90
3.15 The Indian subcontinentp. 91
3.15.1 The Makran coastp. 91
3.15.2 The western coast of Indiap. 92
3.15.3 The eastern coast of the subcontinentp. 92
3.15.4 Indian Ocean vent faunap. 93
3.16 South China Seap. 93
3.16.1 Offshore Bruneip. 93
3.16.2 Offshore Vietnamp. 93
3.16.3 HongKongp. 93
3.16.4 Taiwanp. 93
3.17 Australasiap. 94
3.17.1 Sawu Seap. 94
3.17.2 Timor Seap. 94
3.17.3 New Britain and the Manus basinsp. 95
3.17.4 New Zealandp. 97
3.18 Western Pacificp. 98
3.18.1 Silicic dome volcanism in the Mariana Back-arc Basinp. 98
3.18.2 Serpentine mud volcanoes near the Mariana Trenchp. 98
3.18.3 The Yellow and East China seasp. 99
3.18.4 Offshore Koreap. 99
3.18.5 Japanp. 99
3.18.6 Sea of Okhotskp. 101
3.18.7 Piip Submarine Volcano, east of Kamchatkap. 103
3.19 Offshore Alaskap. 103
3.19.1 Bering Seap. 103
3.19.2 Gulf of Alaskap. 105
3.19.3 The Aleutian Subduction Zonep. 106
3.20 British Columbiap. 107
3.20.1 Queen Charlotte Soundp. 107
3.20.2 The Fraser Deltap. 107
3.21 Cascadiap. 109
3.21.1 Hydrate Ridgep. 109
3.21.2 Axial Seamountp. 110
3.22 Californiap. 111
3.22.1 Northern Californiap. 111
3.22.2 Monterey Bayp. 112
3.22.3 Big Surp. 114
3.22.4 Santa Barbara Channelp. 115
3.22.5 Malibu Pointp. 117
3.23 Ocean spreading centres of the east Pacificp. 117
3.23.1 Guaymas Basin, Gulf of Californiap. 117
3.24 Central and South Americap. 118
3.24.1 Costa Ricap. 118
3.24.2 Perup. 119
3.24.3 The Argentine Basinp. 120
3.24.4 The Mouth of the Amazonp. 120
3.25 The Caribbeanp. 120
3.25.1 Barbados Accretionary Wedgep. 121
3.25.2 Birth of Chatham Island, Trinidadp. 122
3.26 Gulf of Mexicop. 122
3.27 The eastern seaboard, USAp. 126
3.27.1 Cape Lookout Bightp. 126
3.27.2 Atlantic Continental Marginp. 126
3.27.3 Chesapeake Bayp. 127
3.27.4 Active pockmarks, Gulf of Mainep. 128
3.28 The Great Lakesp. 129
3.28.1 Ring-shaped depressions, Lake Superiorp. 129
3.28.2 Pockmark-like depressions, Lake Michiganp. 129
3.29 Eastern Canadap. 129
3.29.1 The Scotian and Labrador shelves, and the Grand Banksp. 129
3.29.2 The Laurentian Fanp. 131
3.29.3 The Baffin Shelfp. 131
3.30 Finalep. 132
4 The contexts of seabed fluid flowp. 134
4.1 Introductionp. 134
4.2 Oceanographic settingsp. 134
4.2.1 Coastal settingsp. 134
4.2.2 Continental shelvesp. 136
4.2.3 Continental slopes and risesp. 136
4.2.4 Abyssal plainsp. 136
4.3 Plate tectonics settingsp. 136
4.3.1 Divergent (constructive) plate boundariesp. 137
4.3.2 Convergent (destructive) plate boundariesp. 138
4.3.3 Transform plate boundariesp. 140
4.3.4 Intraplate igneous activityp. 140
4.3.5 Serpentinite seamountsp. 142
4.4 Conclusionp. 143
5 The nature and origins of flowing fluidsp. 144
5.1 Introductionp. 144
5.2.1 Magma and volcanic fluidsp. 144
5.2.2 Geothermal systemsp. 145
5.2.3 Hydrothermal circulation systemsp. 145
5.2.4 Exothermic hydrothermal systemsp. 149
5.3 Water flowsp. 150
5.3.1 Submarine groundwater dischargep. 150
5.3.2 Expelled pore waterp. 150
5.4 Petroleum fluidsp. 151
5.4.1 Organic originsp. 151
5.4.2 Microbial methanep. 153
5.4.3 Thermogenic hydrocarbonsp. 154
5.4.4 Hydrothermal and abiogenic petroleump. 157
5.5 Discriminating between the originsp. 162
6 Shallow gas and gas hydratesp. 163
6.1 Introductionp. 163
6.1.1 The character and formation of gas bubblesp. 163
6.2 Geophysical indicators of shallow gasp. 165
6.2.1 The acoustic response of gas bubblesp. 166
6.2.2 Seismic evidence of gassy sedimentsp. 167
6.2.3 Novel gas detection and mappingp. 178
6.2.4 Seasonal shallow gas depth variationsp. 178
6.3 Gas hydrates - a special type of accumulationp. 178
6.3.1 Nature and formationp. 179
6.3.2 Gas hydrates and fluid flowp. 182
6.3.3 The BSRp. 183
6.3.4 Other hydrate indicatorsp. 186
6.3.5 Dissociationp. 187
7 Migration and seabed featuresp. 189
7.1 Introductionp. 189
7.2 Pockmarks and related featuresp. 190
7.2.1 Distributionp. 191
7.2.2 Pockmarks and fluid flowp. 192
7.2.3 Pockmark activityp. 194
7.3 Mud volcanoes and mud diapirsp. 195
7.3.1 The distribution of mud volcanoes and mud diapirsp. 197
7.3.2 Mud-volcano morphologyp. 198
7.3.3 Mud-volcano emission productsp. 201
7.3.4 Mud-volcano activityp. 202
7.4 Related featuresp. 205
7.4.1 Seabed domingp. 206
7.4.2 Collapse depressionsp. 206
7.4.3 Freak sandwavesp. 206
7.4.4 Shallow mud diapirs and mud volcanoesp. 206
7.4.5 Red Sea diapirsp. 207
7.4.6 Diatremesp. 208
7.4.7 Sand intrusions and extrusionsp. 209
7.4.8 Polygonal faultsp. 211
7.4.9 Genetic relationshipsp. 212
7.5 Movers and shakers: influential factorsp. 213
7.5.1 The deep environmentp. 214
7.5.2 Driving forcesp. 215
7.5.3 Fluid migrationp. 216
7.5.4 Modelling the processesp. 226
7.5.5 Triggering eventsp. 228
7.5.6 Ice-related influencesp. 237
7.6 A unified explanationp. 239
7.6.1 Fundamental principlesp. 239
7.6.2 Explaining seepsp. 240
7.6.3 The formation of pockmarks and related seabed featuresp. 242
7.6.4 Mud volcanoes and diapirismp. 245
7.6.5 Alternative explanationsp. 246
7.7 Fossil featuresp. 247
7.8 Related features - looking further afieldp. 247
8 Seabed fluid flow and biologyp. 248
8.1 Seabed fluid flow habitatsp. 248
8.1.1 Cold seeps on continental shelvesp. 248
8.1.2 Deep-water cold seepsp. 251
8.1.3 The link between hydrocarbons and cold-seep communitiesp. 253
8.1.4 Shallow groundwater discharge sitesp. 253
8.1.5 Deep-water groundwater discharge sitesp. 255
8.1.6 Coral reefs and seabed fluid flowp. 255
8.1.7 Hydrothermal ventsp. 260
8.2 Fauna and seabed fluid flowp. 262
8.2.1 Microbes - where it all beginsp. 262
8.2.2 Living together: symbiosis and seepsp. 269
8.2.3 Non-symbiotic seep faunap. 273
8.3 Seeps and marine ecologyp. 276
8.3.1 Geographical distributionp. 277
8.3.2 Communities as indicators of seep activity and maturityp. 278
8.3.3 Do shallow-water cold seeps support chemosynthetic communities?p. 280
8.3.4 Do seeps contribute to the marine food web?p. 284
8.3.5 Is fluid flow relevant to global biodiversity?p. 286
8.3.6 The 'deep biosphere' and the origins of life on Earthp. 287
8.4 A glimpse into the pastp. 288
8.4.1 Fossil cold-seep communitiesp. 288
9 Seabed fluid flow and mineral precipitationp. 290
9.1 Introductionp. 290
9.2 Methane-derived authigenic carbonatesp. 290
9.2.1 North Sea 'pockmark carbonates'p. 290
9.2.2 'Bubbling Reefs' in the Kattegatp. 291
9.2.3 Carbonate mineralogyp. 291
9.2.4 Other modern authigenic carbonatesp. 293
9.2.5 Isotopic indications of originp. 295
9.2.6 MDAC formation mechanismp. 295
9.2.7 Associated mineralsp. 297
9.2.8 MDAC chimneysp. 299
9.2.9 Self-sealing seepsp. 301
9.2.10 MDAC: block formationp. 302
9.2.11 Carbonate moundsp. 302
9.2.12 Fossil seep carbonatesp. 304
9.2.13 Summary of MDAC occurrencesp. 307
9.3 Other fluid-flow-related carbonatesp. 307
9.3.1 Microbialites and stromatolitesp. 308
9.3.2 Ikaitep. 311
9.3.3 Whitingsp. 311
9.3.4 Carbonates and serpentinitesp. 313
9.4 Hydrothermal seeps and mineralisationp. 314
9.4.1 Sediment-filtered hydrothermal fluid flowp. 315
9.4.2 Anhydrite moundsp. 316
9.4.3 Hydrothermal salt stocksp. 317
9.5 Other mineral precipitatesp. 318
9.5.1 Iron from submarine groundwater dischargep. 318
9.5.2 Phosphates on seamounts, guyots, and atollsp. 318
9.6 Ferromanganese nodulesp. 319
9.7 Final thoughtsp. 321
10 Impacts on the hydrosphere and atmospherep. 323
10.1 Introductionp. 323
10.2 Hydrothermal vents and plumesp. 323
10.2.1 Plumesp. 324
10.2.2 Plume compositionp. 325
10.2.3 Plumes and the composition of the oceansp. 326
10.2.4 Heating the oceansp. 328
10.3 Submarine groundwater dischargep. 329
10.3.1 Detection and quantificationp. 329
10.3.2 Water qualityp. 330
10.4 Seepsp. 331
10.4.1 Identifying seepsp. 331
10.4.2 Eruptions and blowoutsp. 333
10.4.3 Quantifying seepsp. 335
10.4.4 The fate of the seabed fluxp. 338
10.5 Methane in the 'normal' oceanp. 341
10.5.1 Rivers, estuaries, and lagoonsp. 341
10.5.2 The open oceanp. 342
10.5.3 The influence of"seabed methane sourcesp. 344
10.6 Emissions to the atmospherep. 345
10.6.1 Methane emissions from the oceansp. 345
10.6.2 Seabed sources of atmospheric methanep. 347
10.7 Global carbon cyclep. 349
10.8 Limiting global climate changep. 350
10.8.1 Quaternary ice agesp. 350
10.8.2 Earlier eventsp. 353
10.9 Afterwordp. 353
11 Implications for manp. 355
11.1 Introductionp. 355
11.2 Seabed slope instabilityp. 355
11.2.1 Gas-related slope failures: case studiesp. 356
11.2.2 Associated tsunamisp. 359
11.2.3 Why do submarine slopes fail?p. 359
11.2.4 Predicting slope stabilityp. 361
11.2.5 Impacts of slope failures on offshore operationsp. 362
11.3 Drilling hazardsp. 362
11.3.1 Blowoutsp. 362
11.3.2 Hydrogen sulphidep. 366
11.3.3 Drilling and gas hydratesp. 367
11.4 Hazards to seabed installationsp. 369
11.4.1 Pockmarks as seabed obstaclesp. 369
11.4.2 Trenching through MDACp. 369
11.4.3 Foundation problemsp. 370
11.4.4 Effects of gas hydratesp. 370
11.5 Eruptions and natural blowoutsp. 371
11.5.1 Gas-induced buoyancy lossp. 372
11.6 Benefitsp. 374
11.6.1 Metallic ore depositsp. 374
11.6.2 Exploiting gas seepsp. 374
11.6.3 Gas hydrates - fuel of the future?p. 375
11.6.4 Technological challengep. 376
11.6.5 Benefits to fishing?p. 383
11.6.6 Seeps, vents, and biotechnologyp. 383
11.7 Impacts of human activities on seabed fluid flow and associated featuresp. 383
11.7.1 Potential triggersp. 383
11.7.2 Environmental protectionp. 384
Referencesp. 387
Indexp. 442