Cover image for Clinical radiotherapy physics
Title:
Clinical radiotherapy physics
Personal Author:
Edition:
2nd ed.
Publication Information:
Berlin : Springer-Verlag, 2004
ISBN:
9783540402848

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010093172 R895 J39 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This book provides an in-depth introduction to radiotherapy physics. The emphasis in much of the work is on the clinical aspects of the field. Uniquely useful for both the physicist and non-physicist, Clinical Radiotherapy Physics gradually and sequentially develops each of its topics in clear, concise language. It includes important mathematical analyses, yet is written so that these sections can be skipped, if desired, without compromising understanding. The book is divided into seven parts covering basic physics (Parts I-II), equipment for radiotherapy (Part III), radiation dosimetry (Parts IV-V), radiation treatment planning (Part VI), and radiation safety and shielding (Part VII). For radiation oncologists, radiation therapists, and clinical physicists.


Table of Contents

Part I Basic Physics and Radioactivity Decay
1 Scope of Clinical Radiotherapy Physicsp. 3
1.1 A Physicist in a Clinic?p. 3
1.2 Physical Concepts and Radiotherapyp. 3
1.3 Cooperation between Physicist and Physicianp. 4
1.4 Scope of this Bookp. 5
Referencesp. 6
2 Atoms, Molecules, and Matterp. 7
2.1 Historical Origin of Atomic Physicsp. 7
2.2 Formation of Atoms and Elementsp. 8
2.3 Atomic Electron Configurationp. 11
2.4 Definition of an Electron Volt (eV)p. 15
2.5 Atomic Mass, Molecular Mass, and Atomic Mass Unitp. 15
2.6 Avogadro's Number (N[subscript Av])p. 16
2.7 Periodic Table of Elementsp. 17
2.8 Molecular Bondsp. 17
2.9 Elementary Particlesp. 20
2.10 Outer Space and Particle Researchp. 24
Referencesp. 25
3 Propagation of Energy by Electromagnetic Wavesp. 26
3.1 Radio Waves, Heat Waves, and Light Wavesp. 26
3.2 Wave Propagationp. 26
3.3 Photons, Quanta, and the Electromagnetic Spectrump. 28
3.4 Louis de Broglie's Matter Wavesp. 29
4 Nuclear Transitions and Radioactive Decayp. 31
4.1 Discovery of Natural Radioactivityp. 31
4.2 Nuclear Forces and Energy Levelsp. 32
4.3 Nuclear Decay Schemesp. 33
4.4 Alpha Decayp. 33
4.5 Beta Decayp. 34
4.6 Internal Conversion (IC)p. 38
4.7 Isomeric Transitionp. 40
4.8 Nuclear Fissionp. 40
4.9 Nuclear Fusionp. 41
4.10 Induced Nuclear Transformationsp. 42
5 Radioactive Decay Calculationsp. 43
5.1 Introductionp. 43
5.2 Decay of a Single Isotopep. 43
5.3 Radioactive Decay Chainsp. 48
5.4 Neutron Activationp. 52
Part II Interaction of Radiation with Matter
6 Collision and Radiation Loss in Charged-Particle Interactionsp. 59
6.1 Slowing Down of Charged Particlesp. 59
6.2 Collision Lossp. 60
6.3 Radiative Lossp. 63
Referencesp. 68
7 Photon Interactionsp. 69
7.1 Nature of the Interactionsp. 69
7.2 Attenuation Coefficientp. 70
7.3 Coherent Thompson Scatteringp. 72
7.4 Photoelectric Absorptionp. 73
7.5 Incoherent Compton Scatteringp. 77
7.6 Negatron-Positron Pair Productionp. 82
7.7 Summing up the Local Energy Absorbedp. 85
7.8 Components of [mu] at Different Energiesp. 85
7.9 Attenuation Coefficients for Mixtures and Compoundsp. 87
7.10 Broad- and Narrow-Beam Attenuation Geometriesp. 88
7.11 Photonuclear Reactionsp. 90
Part III Radiation Beam Therapy Equipment
8 Conventional X-Ray Machinesp. 95
8.1 Discovery of X-Raysp. 95
8.2 Gas-Discharge X-Ray Tubep. 96
8.3 Features of Modern X-Ray Tubesp. 96
8.4 High-Voltage Supply and Rectificationp. 100
8.5 A Typical X-Ray Circuitp. 104
8.6 X-Ray Spectra and Qualityp. 105
9 Equipment for Radioisotope Teletherapyp. 107
9.1 Concept of Teletherapyp. 107
9.2 Radioisotope Sourcesp. 107
9.3 [superscript 60]Co Teletherapy Machinesp. 109
9.4 Miscellaneous Features and Accessoriesp. 114
9.5 Closing Remarksp. 117
10 Particle Acceleratorsp. 118
10.1 Three Categories of Acceleratorsp. 118
10.2 Direct-Voltage, Electrostatic Acceleratorsp. 119
10.3 Linear Acceleratorsp. 121
10.4 Betatronp. 127
10.5 Cyclotronp. 129
10.6 Microtronp. 130
Part IV Radiation Quantities, Units, and Detectors
11 Quantification of Radiation Field: Radiation Units and Measurementsp. 135
11.1 Radiation Fieldp. 135
11.2 Some Theoretical Conceptsp. 135
11.3 Dose and Kerma Profiles--An Interface Examplep. 140
11.4 Air Kerma (k[subscript air]) and Water Kerma (k[subscript water])p. 142
11.5 Exposurep. 142
11.6 Measurement of Exposurep. 146
11.7 Use of Calibrated Ion Chamber in Therapy Beamsp. 150
11.8 Calorimetry and Protocols Based on Absorbed Dose to Waterp. 157
11.9 Air-Kerma Rate Constant for Radionuclide Sourcesp. 159
11.10 Reference Air-Kerma Rate for Specifying Brachytherapy Source Strengthp. 162
Referencesp. 165
12 Instruments for Radiation Detectionp. 168
12.1 Introductionp. 168
12.2 Ionization Detectorsp. 168
12.3 Photographic Film Detectorp. 173
12.4 Scintillation Detectorp. 176
12.5 Solid-State Electrical Conductivity Detectorsp. 177
12.6 Thermoluminescent Dosimeters (TLDS)p. 178
12.7 Chemical Dosimetersp. 180
12.8 Optically Stimulated Luminescence (OSL) Dosimetryp. 181
12.9 Nuclear Magnetic Resonance (NMR) Dosimetryp. 182
12.10 Radiochromic Film Dosimetryp. 182
12.11 Concluding Remarksp. 183
Referencesp. 183
Part V Dosimetry of Radiation Beams
13 Basic Ratios and Factors for the Dosimetry of External Beamp. 189
13.1 Introductionp. 189
13.2 Defining the Beam Geometryp. 189
13.3 Quality of Beamsp. 191
13.4 Central-Axis Dose Profilep. 192
13.5 Calculation of Dose in the Depth: General Approachp. 193
13.6 Dose to Tissue in Airp. 194
13.7 Inverse-Square Fall-Offp. 195
13.8 Irradiation Parametersp. 196
13.9 Tissue-Air Ratio (TAR)p. 197
13.10 Peak Scatter Factor (PSF)p. 198
13.11 Normalized PSF (NPSF)p. 200
13.12 Percent Depth Dose (PDD)p. 200
13.13 Tissue Maximum Ratio (TMR)p. 205
13.14 Tissue-Phantom Ratiop. 206
13.15 Dose Output Factorsp. 206
13.16 Methods of Deriving the Dose Rate D[subscript P] at Point Pp. 212
13.17 Calculation of Treatment Durationp. 214
13.18 Equivalent Squares and Circlesp. 214
13.19 Relationship of TAR and TMR to PDDp. 217
13.20 Converting PDD for One SSD to that for Anotherp. 217
13.21 Concluding Remarksp. 227
Referencesp. 229
14 Beam Dosimetry: Additional Corrections--Special Situationsp. 230
14.1 Introductionp. 230
14.2 Scatter Considerationsp. 230
14.3 General Approach for Off-Central Axis Pointsp. 238
14.4 Correction for Body Inhomogeneitiesp. 240
14.5 Bone Attenuation and Absorptionp. 248
14.6 Beams of Non-Uniform Intensityp. 251
14.7 Concluding Remarksp. 252
Referencesp. 253
Part VI Radiation Treatment Planning
15 Treatment Dose Distribution Planning: Photon Beamsp. 259
15.1 Introductionp. 259
15.2 Isodose Surfaces and Curvesp. 259
15.3 Single-Beam Isodose Curvesp. 260
15.4 Concept of Combining Beamsp. 264
15.5 Derivation of Dose Distributionp. 265
15.6 Planning of Dose Distributionsp. 271
15.7 Principles of the Use of Wedge Filtersp. 273
15.8 Irradiations with Parallel Opposed Beamsp. 279
15.9 Other Common Techniquesp. 288
15.10 Treatment Planning: A Practical Casep. 294
15.11 Use of CT Datap. 306
15.12 Treatment of Adjacent Sitesp. 309
15.13 3D-CRT, SRT, IMRTp. 315
15.14 Concluding Remarksp. 318
Referencesp. 318
16 Physical Aspects of Electron Beam Therapyp. 323
16.1 Electron Transportp. 323
16.2 Electron Beam from Machine to Patientp. 323
16.3 Electron Beam After Entering the Patientp. 325
16.4 Electron Beam Depth Dose Datep. 329
16.5 Planning a Simple Electron Beam Treatmentp. 330
16.6 Electron Beam Depth Dose and Field Sizep. 331
16.7 Electron Pencil Beamp. 333
16.8 Oblique Incidence and Depth Dosep. 333
16.9 Electron Beams: Some Practical Considerationp. 335
16.10 Influence of Inhomogeneitiesp. 342
16.11 Comparison of Kilovoltage X-Ray and Electron Beamsp. 345
16.12 Total-Skin Electron Treatmentp. 346
16.13 Intraoperative Electron Therapyp. 347
16.14 Electron Arc Therapyp. 348
16.15 Adjacent Electron Fieldsp. 350
Referencesp. 352
17 Physics of the Use of Small Sealed Sources in Brachytherapyp. 357
17.1 Brachytherapyp. 357
17.2 Categories of Applicationsp. 359
17.3 Source Strength of Brachytherapy Sourcesp. 361
17.4 Source Strength and Time Productp. 365
17.5 Dosimetry of a Point Source in Waterp. 366
17.6 Dosimetry of a Linear Sourcep. 371
17.7 A Simple Line Source Treatmentp. 377
17.8 Forming Multiple Source Arraysp. 379
17.9 Systems for Brachytherapyp. 384
17.10 Manchester (Paterson and Parker) Distribution Rulesp. 394
17.11 Planning and Implementing a Practical Casep. 399
17.12 Permanent Implantsp. 408
17.13 Intracavitary Irradiationp. 409
Referencesp. 414
Part VII Radiation Safety
18 Radiation Safety Standardsp. 421
18.1 Introductionp. 421
18.2 Harmful Effects of Radiationp. 422
18.3 Evaluation of Dose for Radiation Protectionp. 423
18.4 Uncertainties in Radiation Risk Assessmentp. 430
18.5 Radiation Safety Philosophyp. 434
18.6 Safety of Radiation Workersp. 436
18.7 Safety of the General Publicp. 439
Referencesp. 440
19 Radiation Safety in External-Beam Therapyp. 443
19.1 Introductionp. 443
19.2 Time, Distance, and Shieldingp. 444
19.3 Approach to Shielding Design of a Beam-Therapy Facilityp. 444
19.4 Estimating the Allowable Barrier Transmissionp. 451
19.5 High-Energy X-Rays and Neutron Productionp. 457
19.6 An Example of Shielding Calculations for a Facilityp. 460
19.7 Ozone Productionp. 467
19.8 Miscellaneous Aspects of Planning a Facilityp. 467
Referencesp. 474
20 Radiation Safety in Brachytherapyp. 478
20.1 Introductionp. 478
20.2 Role of Time and Afterloadingp. 479
20.3 Role of Distancep. 479
20.4 Role of Shieldingp. 480
20.5 Monitoring Instrumentsp. 480
20.6 Source Storage and Preparationp. 480
20.7 Source Inventoryp. 482
20.8 Source Wipe Testsp. 482
20.9 Source Transportp. 483
20.10 Safety of Nurses and Visitors During Treatmentp. 484
20.11 Procedure After Treatmentp. 484
20.12 Permanent Implantsp. 486
20.13 Personnel Monitoringp. 486
20.14 Conclusionp. 487
Referencesp. 487
Appendix A and B
Appendix A. Electron Mass Stopping Powers (in MeV cm[superscript 2] g[superscript -1]) for Various Materialsp. 491
Appendix B. Mass Attenuation Coefficients, Mass Energy Transfer Coefficients, and Mass Energy Absorption Coefficients (in cm[superscript 2] g[superscript -1]) for Various Materialsp. 499
Subject Indexp. 507