Cover image for Quantum optics with semiconductor nanostructures
Title:
Quantum optics with semiconductor nanostructures
Series:
Woodhead Publishing series in electronic and optical materials ; no. 28
Publication Information:
Oxford ; Philadelphia : Woodhead, 2012
Physical Description:
xxiv, 577 p. : ill. ; 24 cm.
ISBN:
9780857092328
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010312181 QC446.2 Q834 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.

Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.

With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students.


Author Notes

Frank Jahnke is Professor at the Institute for Theoretical Physics, University of Bremen, Germany, and is internationally known for his research on semiconductor quantum optics.


Table of Contents

S. M. Ulrich and A. Ulhaq and P. MichlerA. Majumdar and M. Bajcsy and K. Rivoire and S. Buckley and A. Faraon and E. D. Kim and D. Englund and J. VuckovicC. Gies and M. Florian and F. Jahnke and P. GartnerS. Reitzenstein and A. ForchelM. Aβmann and M. BayerS. StraufJ-B. Shim and A. Eberspächer and J. Wiersig and J. Unterhinninghofen and Q. H. Song and L. Ge and H. Cao and A. D. StoneA. Carmele and M-R. Dachner and J. Kabuss and M. Richter and F. Milde and A. KnorrF. P. Laussy and E. Del Valle and A. Laucht and A. Gonzalez-Tudela and M. Kaniber and J. J. Finley and C. TejedorG. Tarel and V. Savona and M. Winger and T. Volz and A. Imamoglu and Eidgenössische Technische HochschuleL. Schneebeli and M. Kira and S.W. KochP. LodahlJ. Hendrickson and A. Homyk and A. Scherer and T. Alasaarela and A. Säynätjoki and S. Honkanen and B. C. Richards and J-Y. Kim and Y-H. Lee and R. Gibson and M. Gehl and J. D. Olitzky and S. Zandbergen and H. M. Gibbs and G. KhitrovaC. Kruse and S. Figge and D. HommelR. Bratschitsch and R. Huber and A. LeitenstorferS. Michaelis de Vasconcellos and S. Gordon and D. Mantei and Y. A. Leier and M. Al-Hmoud and W. Quiring and A. Zrenner
Contributor contact detailsp. xiii
Woodhead Publishing Series in Electronic and Optical Materialsp. xix
Prefacep. xxiii
Part I Single quantum dot systemsp. 1
1 Resonance fluorescence emission from single semiconductor quantum dots coupled to high-quality microcavitiesp. 3
1.1 Introductionp. 3
1.2 Emitter state preparation in single semiconductor quantum dots: role of dephasingp. 5
1.3 Resonance fluorescence from a single semiconductor quantum dotp. 9
1.4 Dephasing of Mollow triplet sideband emission from a quantum dot in a microcavityp. 24
1.5 The phenomenon of non-resonant quantum dot-cavity couplingp. 30
1.6 Conclusionp. 40
1.7 Acknowledgmentsp. 41
1.8 Referencesp. 41
2 Quantum optics with single quantum dots in photonic crystal cavitiesp. 46
2.1 Introductionp. 46
2.2 Integrated, solid-state quantum optics platform: InAs quantum dots (QDs) and photonic crystal nanocavitiesp. 47
2.3 Photon blockade and photon-assisted tunnelingp. 52
2.4 Fast, electrical control of a single quantum dot-cavity systemp. 57
2.5 Phonon-mediated off-resonant interaction in a quantum dot-cavity systemp. 63
2.6 Quantum photonic interfaces between In As quantum dots and telecom wavelengthsp. 70
2.7 Future trends and conclusionsp. 73
2.8 Acknowledgmentsp. 73
2.9 Referencesp. 73
3 Modeling single quantum dots in microcavitiesp. 78
3.1 Introductionp. 78
3.2 Building blocks of the coupled microcavity-quantum dot systemp. 79
3.3 Theoretical description of the single-quantum dot-microcavity systemp. 84
3.4 Numerical methods and characteristic quantitiesp. 88
3.5 Competing electronic configurations and input/output characteristics of a single-quantum dot laserp. 93
3.6 Sources of dephasing and spectral linewidthsp. 103
3.7 Analogy to the two-level systemp. 107
3.8 Conclusionsp. 109
3.9 Referencesp. 111
Part II Nanolasers with quantum dot emittersp. 115
4 Highly efficient quantum dot micropillar lasersp. 117
4.1 Introductionp. 117
4.2 Theoretical description of high-ß microlasersp. 118
4.3 Fabrication of quantum dot (QD) micropillar lasersp. 123
4.4 Optical characterization and pre-selection of QD micropillars for lasing studiesp. 127
4.5 Lasing in optically pumped QD micropillar lasersp. 131
4.6 Lasing in electrically pumped QD micropillar lasersp. 141
4.7 Future trends and conclusionsp. 149
4.8 Acknowledgmentsp. 149
4.9 Referencesp. 150
5 Photon correlations in semiconductor nanostructuresp. 154
5.1 Introductionp. 154
5.2 Theoretical description of light-matter couplingp. 155
5.3 Photon statisticsp. 163
5.4 Experimental approaches to photon correlation measurementsp. 167
5.5 Correlation measurements on semiconductor nanostructuresp. 170
5.6 Future trends and conclusionsp. 182
5.7 Referencesp. 182
6 Emission properties of photonic crystal nanolasersp. 186
6.1 Introductionp. 186
6.2 Design of photonic crystal (PC) nanocavitiesp. 188
6.3 Optical emission properties of quantum dots (QDs) in PC nanocavitiesp. 195
6.4 Signatures of lasing in PC nanolasersp. 202
6.5 Detuning experiments: the quest for the gain mechanismp. 206
6.6 Conclusionsp. 214
6.7 Acknowledgmentsp. 215
6.8 Referencesp. 215
7 Deformed wavelength-scale microdisk lasers with quantum dot emittersp. 225
7.1 Introductionp. 225
7.2 Ray-wave correspondence in microdisk cavitiesp. 229
7.3 Modified ray-wave correspondence in wavelength-scale cavitiesp. 231
7.4 Wavelength-scale asymmetric resonant microcavity lasersp. 239
7.5 Conclusionsp. 248
7.6 Acknowledgmentp. 249
7.7 Referencesp. 249
Part III Light-matter interaction in semiconductor nanostructuresp. 253
8 Photon statistics and entanglement in phonon-assisted quantum light emission from semiconductor quantum dotsp. 255
8.1 Introductionp. 255
8.2 Incoherently driven emission: phonon-assisted single quantum dot luminescencep. 258
8.3 Entanglement analysis of a quantum dot biexciton cascadep. 264
8.4 Coherently driven emissionp. 269
8.5 Equations of motionp. 272
8.6 Emission dynamicsp. 275
8.7 Emission from strongly coupled quantum dot cavity quantum electrodynamicsp. 279
8.8 Phonon-assisted polariton signaturesp. 283
8.9 Phonon-enhanced antibunchingp. 285
8.10 Conclusionsp. 289
8.11 Referencesp. 289
9 Luminescence spectra of quantum dots in microcavitiesp. 293
9.1 Introductionp. 293
9.2 The Jaynes-Cummings modelp. 295
9.3 Luminescence spectrap. 300
9.4 Experimental implementations and observationsp. 309
9.5 Luminescence spectra in the nonlinear regimep. 315
9.6 Effects of pure dephasingp. 319
9.7 Lasingp. 322
9.8 Conclusions and future trendsp. 325
9.9 Acknowledgementsp. 326
9.10 Referencesp. 326
10 Photoluminescence from a quantum dot-cavity systemp. 332
10.1 Introduction: solid-state cavity quantum electrodynamics (CQED) systems with quantum dots (QDs)p. 332
10.2 Cavity feeding: influence of multiexcitonic states at large detuningp. 337
10.3 Model for a QD-cavity systemp. 340
10.4 Radiative processes revisitedp. 348
10.5 Cavity feeding: Monte Carlo modelp. 350
10.6 Cavity feeding: influence of acoustic phonons at small detuningp. 357
10.7 Conclusionsp. 363
10.8 Acknowledgementsp. 364
10.9 Referencesp. 364
11 Quantum optics with quantum-dot and quantum-well systemsp. 369
11.1 Introductionp. 369
11.2 Quantum-optical correlationsp. 370
11.3 Quantum emission of strong-coupling quantum dotsp. 377
11.4 Quantum-optical spectroscopyp. 384
11.5 Future trends and conclusionsp. 390
11.6 Referencesp. 390
Part IV Semiconductor cavity quantum electrodynamics (QED)p. 393
12 All-solid-state quantum optics employing quantum dots in photonic crystalsp. 395
12.1 Introductionp. 395
12.2 Light-matter interaction in photonic crystalsp. 396
12.3 Disordered photonic crystal waveguidesp. 409
12.4 Cavity quantum electrodynamics in disordered photonic crystal waveguidesp. 413
12.5 Future trends and conclusionsp. 417
12.6 Acknowledgmentsp. 418
12.7 Referencesp. 418
13 One-dimensional photonic crystal nanobeam cavitiesp. 421
13.1 Introductionp. 421
13.2 Design, fabrication and computationp. 426
13.3 Passive photonic crystal cavity measurement techniquep. 429
13.4 Atomic layer deposition (ALD) technique and historyp. 432
13.5 Experimental results of ALD coated photonic crystal nanobeam cavitiesp. 436
13.6 Conclusionsp. 441
13.7 Future trendsp. 441
13.8 Acknowledgmentsp. 442
13.9 Referencesp. 442
14 Growth of II-VI and Ill-nitride quantum-dot microcavity systemsp. 447
14.1 Introductionp. 447
14.2 Growth of II-VI quantum dots: CdSe and CdTep. 450
14.3 II-VI Bragg reflectors lattice matched to GaAs and ZnTep. 456
14.4 Microcavities containing CdSe or CdTe quantum dotsp. 463
14.5 Formation of InGaN quantum dotsp. 465
14.6 Nitride-based Bragg reflectorsp. 471
14.7 Microcavities containing InGaN quantum dotsp. 473
14.8 Preparation of micropillars employing focused ion beam etchingp. 475
14.9 Conclusionsp. 477
14.10 Referencesp. 478
Part V Ultrafast phenomenap. 485
15 Femtosecond quantum optics with semiconductor nanostructuresp. 487
15.1 Introductionp. 487
15.2 Few-fermion dynamics and single-photon gain in a semiconductor quantum dotp. 490
15.3 Nanophotonic structures for increased light-matter interactionp. 497
15.4 Ultrastrong light-matter coupling and sub-cycle switching: towards non-adiabatic quantum electrodynamicsp. 506
15.5 Ultrabroadband terahertz technology û watching light oscillatep. 508
15.6 Intersubband-cavity polaritons - non-adiabatic switching of ultrastrong couplingp. 514
15.7 Referencesp. 522
16 Coherent optoelectronics with quantum dotsp. 528
16.1 Introductionp. 528
16.2 Single quantum dot photodiodesp. 529
16.3 Exciton qubits in photodiodesp. 533
16.4 Coherent manipulation of the excitonp. 536
16.5 Ramsey fringes: control of the qubit phasep. 543
16.6 Coherent control by optoelectronic manipulationp. 548
16.7 Future trends and conclusionsp. 554
16.8 Acknowledgementsp. 555
16.9 Referencesp. 555
Indexp. 561