Cover image for Finite element and boundary element applications in quantum mechanics
Title:
Finite element and boundary element applications in quantum mechanics
Personal Author:
Series:
Oxford text in applied and engineering mathematics ; 5
Publication Information:
Oxford : Oxford University Press, 2002
ISBN:
9780198525219

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010133462 QC174.17.F54 R35 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Starting from a clear, concise introduction, the powerful finite element and boundary element methods of engineering are developed for application to quantum mechanics. The reader is led through illustrative examples displaying the strengths of these methods using application to fundamental quantum mechanical problems and to the design/simulation of quantum nanoscale devices.


Table of Contents

Part I Introduction to the FEM
1 Introductionp. 3
1.1 Basic concepts of quantum mechanicsp. 4
1.1.1 Schrodinger's equationp. 4
1.1.2 Postulates of quantum mechanicsp. 8
1.2 Principle of stationary actionp. 10
1.2.1 The action integralp. 11
1.2.2 Examplesp. 15
1.3 Finite elementsp. 18
1.4 Historical commentsp. 22
1.5 Problemsp. 23
Referencesp. 28
2 Simple quantum systemsp. 31
2.1 The simple harmonic oscillatorp. 31
2.2 The hydrogen atomp. 39
2.3 The Rayleigh-Ritz variational methodp. 45
2.4 Programming considerationsp. 50
2.5 Problemsp. 57
Referencesp. 60
3 Interpolation polynomials in one dimensionp. 63
3.1 Introductionp. 63
3.2 Lagrange interpolation polynomialsp. 64
3.3 Hermite interpolation polynomialsp. 66
3.4 Transition elementsp. 70
3.5 Low order interpolation polynomialsp. 71
3.5.1 Low order Lagrange interpolationp. 71
3.5.2 Low order Hermite interpolationp. 72
3.6 Interpolation polynomials in Mathematicap. 72
3.6.1 Lagrange interpolationp. 72
3.6.2 Hermite interpolationp. 74
3.7 Infinite elementsp. 76
3.8 Simple quantum systems revisitedp. 77
3.9 Problemsp. 80
Referencesp. 81
4 Adaptive FEMp. 83
4.1 Introductionp. 83
4.2 Error in interpolationp. 84
4.3 Error in the discretized actionp. 86
4.3.1 h-convergencep. 86
4.3.2 p-convergencep. 88
4.4 The action in adaptive calculationsp. 91
4.4.1 An ordinary differential equationp. 92
4.4.2 The H atom againp. 96
4.4.3 Adaptive p-refinementp. 102
4.5 Concluding remarksp. 104
Referencesp. 105
Part II Applications in 1D
5 Quantum mechanical tunnelingp. 109
5.1 Introductionp. 109
5.2 Mixed BCs: redefining the actionp. 110
5.3 The Galerkin methodp. 113
5.4 Tunneling calculations in the FEMp. 115
5.4.1 Evaluation of the residualp. 115
5.4.2 Applying mixed BCsp. 118
5.5 Comparing Galerkin FEM with WKBp. 123
5.6 Quantum states in asymmetric wellsp. 125
5.7 Problemsp. 137
Referencesp. 141
6 Schrodinger-Poisson self-consistencyp. 145
6.1 Introductionp. 145
6.2 Schrodinger and Poisson equationsp. 149
6.3 Source termsp. 151
6.4 The Fermi energy and charge neutralityp. 153
6.5 The Galerkin finite element approachp. 155
6.5.1 Boundary conditionsp. 155
6.5.2 The iteration procedurep. 159
6.5.3 Numerical issuesp. 161
6.5.4 Essential and natural boundary conditionsp. 164
6.6 Further developmentsp. 165
6.7 Problemsp. 167
Referencesp. 169
7 Landau states in a magnetic fieldp. 171
7.1 Introductionp. 171
7.1.1 Landau levelsp. 171
7.1.2 Density of statesp. 174
7.2 Heterostructures in a B-fieldp. 177
7.2.1 Faraday configurationp. 177
7.2.2 Voigt configurationp. 179
7.3 Comparison with experimentsp. 181
7.3.1 Interband transitionsp. 181
7.3.2 Energy dependence on the orbit centerp. 183
7.3.3 Level mixing in superlattices with small band offsetsp. 185
7.3.4 Density of states in the Voigt geometryp. 186
7.4 Voigt geometry and a semiclassical modelp. 188
7.4.1 Landau orbit theoryp. 188
7.4.2 Envelope functions and the FEM in k-spacep. 191
7.5 Problemsp. 192
Referencesp. 194
8 Wavefunction engineeringp. 195
8.1 Introductionp. 195
8.2 k P theory of band structurep. 197
8.3 Designing mid-infrared lasersp. 200
8.3.1 The type-II W-laserp. 200
8.3.2 The interband cascade laserp. 206
8.4 Concluding commentsp. 210
Referencesp. 211
Part III 2D Applications of the FEM
9 2D elements and shape functionsp. 217
9.1 Introductionp. 217
9.2 Rectangular elementsp. 218
9.2.1 Lagrange elementsp. 218
9.2.2 Hermite elementsp. 221
9.3 Triangular elementsp. 222
9.4 Defining curved edgesp. 228
9.4.1 An element on a parametric curvep. 228
9.4.2 Parametric form of 2D surfacesp. 231
9.5 The action in 2D problemsp. 233
9.6 Gauss integration in two dimensionsp. 236
Referencesp. 238
10 Mesh generationp. 241
10.1 Meshing simple regionsp. 241
10.1.1 Distortion of regular regionsp. 242
10.1.2 Using orthogonal curved coordinatesp. 247
10.2 Regions of arbitrary shapep. 247
10.2.1 Delaunay meshingp. 247
10.2.2 Advancing front algorithmsp. 248
10.2.3 The algebraic integer methodp. 250
Referencesp. 256
11 Applications in atomic physicsp. 257
11.1 The H atom in a magnetic fieldp. 257
11.1.1 Schrodinger's equation and the actionp. 258
11.1.2 Applying the FEMp. 259
11.1.3 Magnetic fieldsp. 266
11.2 Ground state energy in heliump. 269
11.3 Other resultsp. 271
Referencesp. 273
12 Quantum wiresp. 275
12.1 Introductionp. 275
12.2 Quantum wires and the FEMp. 276
12.3 Symmetry properties of the square wirep. 282
12.4 The checkerboard superlatticep. 285
12.5 Optical nonlinearity in the CBSLp. 289
12.6 Quantum wires of any cross-sectionp. 292
Referencesp. 295
13 Quantum waveguidesp. 299
13.1 Quantization of resistancep. 300
13.2 The straight waveguidep. 303
13.3 Quantum bound states in waveguidesp. 311
13.4 The quantum interference transistorp. 313
13.5 "Stealth" elements and absorbing BCp. 315
13.6 The Ginzburg-Landau equationp. 322
Referencesp. 323
14 Time-dependent problemsp. 327
14.1 Introductionp. 327
14.2 Standard approaches to time evolutionp. 327
14.2.1 Schrodinger's equation and the method of finite differencesp. 327
14.2.2 The finite difference method for the wave equationp. 330
14.3 A transfer matrix for time evolutionp. 331
14.4 Lanczos reduction of transfer matricesp. 335
14.5 Instability with initial conditionsp. 338
14.5.1 Comparing IVBC and two-point BCsp. 338
14.6 The variational approachp. 347
14.6.1 A variational difficultyp. 347
14.6.2 Variations using adjoint functionsp. 348
14.6.3 Adjoint variations for the wave equationp. 350
14.6.4 Connection with quantum field theoryp. 352
14.7 Concluding remarksp. 355
Referencesp. 356
Part IV Sparse Matrix Applications
15 Matrix solvers and related issuesp. 363
15.1 Introductionp. 363
15.2 Bandwidth reductionp. 363
15.3 Solution of linear equationsp. 366
15.3.1 Gauss eliminationp. 366
15.3.2 The conjugate gradient methodp. 367
15.4 The standard eigenvalue problemp. 372
15.5 The generalized eigenvalue problemp. 373
15.5.1 Sturm sequence checkp. 376
15.5.2 Inverse vector iterationp. 378
15.5.3 The subspace vectorsp. 380
15.5.4 The Rayleigh quotientp. 381
15.5.5 Subspace iterationp. 383
15.5.6 The Davidson algorithmp. 385
15.5.7 Least square residual minimizationp. 388
15.5.8 The Lanczos methodp. 388
Referencesp. 393
Part V Boundary Elements
16 The boundary element methodp. 399
16.1 Introductionp. 399
16.2 The boundary integralp. 400
16.3 An analytical approachp. 402
16.3.1 A Dirichlet problemp. 402
16.3.2 A Neumann problemp. 406
16.4 Infinite domain Green's functionp. 408
16.5 Numerical issuesp. 414
16.5.1 Evaluation of the element integralsp. 414
16.5.2 Applying boundary conditionsp. 415
16.5.3 Boundary condition at the corner nodep. 417
16.5.4 Setting up the matrix equationp. 420
16.5.5 Construction of interior solutionp. 422
16.6 A worked examplep. 423
16.7 Two sum rulesp. 425
16.8 Comparing the BEM with the FEMp. 427
16.9 Problemsp. 428
Referencesp. 432
17 The BEM and surface plasmonsp. 435
17.1 Introductionp. 435
17.2 Multiregion BEM: two regionsp. 437
17.2.1 Linear interpolationp. 437
17.2.2 Hermite interpolationp. 439
17.3 Bulk and surface plasmonsp. 440
17.3.1 Bulk plasma oscillationsp. 441
17.3.2 Surface plasmons at a single planar interfacep. 443
17.3.3 Surface plasmons for slab geometryp. 447
17.3.4 Surface plasmons in a cylindrical wirep. 451
17.3.5 Two metallic wiresp. 455
17.3.6 Metal wire on a substratep. 458
17.3.7 Plasmons in other confining geometriesp. 460
17.4 Surface-enhanced Raman scatteringp. 461
17.5 Problemsp. 462
Referencesp. 468
18 The BEM and quantum applicationsp. 471
18.1 Introductionp. 471
18.2 2D electron waveguidesp. 471
18.2.1 Implementing boundary conditionsp. 477
18.2.2 Multiregion waveguide problemsp. 483
18.2.3 Multiple ports and transmissionp. 484
18.3 The BEM and 2D scatteringp. 487
18.4 Eigenvalue problems and the BEMp. 491
18.4.1 Quantum wiresp. 491
18.4.2 Hearing the shape of a drump. 495
18.5 Concluding remarks on the BEMp. 498
18.6 Problemsp. 501
Referencesp. 505
Part VI Appendices
A Gauss quadraturep. 511
A.1 Introductionp. 511
A.2 Gauss-Legendre quadraturep. 511
A.3 Gauss-Legendre base points and weightsp. 513
A.4 An algorithm for adaptive quadraturep. 517
A.5 Other Gauss formulasp. 519
A.6 The Cauchy principal value of an integralp. 520
A.7 Properties of Legendre functionsp. 522
A.8 Problemsp. 524
Referencesp. 525
B Generalized functionsp. 527
B.1 The Dirac [delta]-functionp. 527
B.2 The [delta]-function as the limit of a "normal" functionp. 530
B.3 [delta]-functions in three dimensionsp. 532
B.4 Other generalized functionsp. 533
B.4.1 The step-function [theta](x)p. 533
B.4.2 The sign-function [varepsilon](x)p. 534
B.4.3 The Plemelj formulap. 535
B.4.4 An integral representation for [theta](z)p. 536
B.5 Problemsp. 536
Referencesp. 538
C Green's functionsp. 541
C.1 Introductionp. 541
C.2 Properties of Green's functionsp. 543
C.3 Sturm-Liouville differential operatorsp. 547
C.4 Green's functions in electrostaticsp. 554
C.5 Boundary integral solutions: a commentp. 557
C.6 Green's functions in electrodynamicsp. 565
C.7 The wave equation in one dimensionp. 570
C.8 The wave equation in two dimensionsp. 573
C.9 Green's functions and integral equationsp. 574
C.10 Problemsp. 576
Referencesp. 579
D Physical constantsp. 581
Author indexp. 583
Subject indexp. 597