Cover image for Rapid prototyping technology : selection and application
Title:
Rapid prototyping technology : selection and application
Personal Author:
Publication Information:
New York : Marcel Dekker, 2001
ISBN:
9780824702618

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004544809 TS155.6 C678 2001 Open Access Book Book
Searching...
Searching...
30000005175991 TS155.6 C678 2001 Open Access Book Book
Searching...
Searching...
30000005179225 TS155.6 C678 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

"Reviews operation principles and methods for most Solid Freeform technologies and historical systems data. Illustrates the uses and mechanical details for a number of systems, including JP-System 5, Ballistic Particle Manufacturing, Fused Deposition Modeling, Laminated Object Manufacturing, Stereolithography, and Selective Laser Sintering, and more."


Author Notes

Kenneth G. Cooper is a Structural Materials Engineer and Rapid Prototyping Research and Development Manager, National Aeronautics and Space Administration (NASA), Marshall Space Flight Center, Huntsville, Alabama.


Table of Contents

Prefacep. iii
1 What Is Rapid Prototyping?p. 1
1.1 Rapid Prototyping Definedp. 1
1.2 Origins of Rapid Prototypingp. 2
1.3 The Design Processp. 3
1.4 The Rapid Prototyping Cyclep. 4
1.5 Where the Technology Is Todayp. 6
1.6 A Sample Application of Rapid Prototypingp. 8
1.7 Rapid Prototyping Processesp. 9
1.8 Key Termsp. 10
Unit I Concept Modelersp. 12
2 The JP-System 5p. 13
2.1 JP-5 Hardwarep. 14
2.2 JP-5 Operation/Build Techniquep. 15
2.3 Finishing a Partp. 23
2.4 Typical Uses of the JP-5 Processp. 24
2.5 Materials Propertiesp. 25
2.6 Key Termsp. 25
3 Ballistic Particle Manufacturingp. 26
3.1 System Hardwarep. 26
3.2 Ballistic Particle Manufacturing Operationp. 27
3.3 Ballistic Particle Manufacturing Build Techniquep. 29
3.4 Finishing of Ballistic Particle Manufacturing Partsp. 29
3.5 Typical Uses of Ballistic Particle Manufacturing Partsp. 30
3.6 Advantages and Disadvantagesp. 32
3.7 Key Termsp. 32
4 The Model Maker Seriesp. 33
4.1 Model Maker System Hardwarep. 33
4.2 Model Maker Operationp. 37
4.3 Advantages and Disadvantages of the Model Makerp. 42
4.4 Key Termsp. 43
5 Multi Jet Modelingp. 44
5.1 System Hardwarep. 44
5.2 Multi Jet Modeling Process Operationp. 45
5.3 Typical Uses of Multi Jet Modelingp. 47
5.4 Advantages and Disadvantages of Multi Jet Modelingp. 48
5.5 Key Termsp. 48
6 3D Printing (Z402 System)p. 50
6.1 Z402 System Hardwarep. 50
6.2 Z402 Operationp. 52
6.3 Build Techniquep. 55
6.4 Postprocessingp. 59
6.5 Typical Uses of Z402 Partsp. 62
6.6 Advantages and Disadvantages of the Z402p. 62
6.7 Key Termsp. 62
7 The Genisys Desktop Modelerp. 64
7.1 History of the Systemp. 65
7.2 System Operationp. 65
7.3 Typical Uses of Genisys Partsp. 66
7.4 Advantages and Disadvantages of Genisysp. 66
Unit II Functional Modelersp. 67
8 Fused Deposition Modelingp. 68
8.1 Fused Deposition Modeling System Hardwarep. 68
8.2 Fused Deposition Modeling Operationp. 73
8.3 Typical Uses of Fused Deposition Modeling Partsp. 85
8.4 Fused Deposition Modeling Materials Propertiesp. 86
8.5 Advantages and Disadvantagesp. 87
8.6 Key Termsp. 87
9 Laminated Object Manufacturingp. 89
9.1 System Hardwarep. 89
9.2 Laminated Object Manufacturing Operationp. 91
9.3 Laminated Object Manufacturing Build Techniquep. 96
9.4 Finishing a Laminated Object Manufacturing Partp. 102
9.5 Typical Uses of Laminated Object Manufacturingp. 105
9.6 Advantages and Disadvantagesp. 107
9.7 Laminated Object Manufacturing Materials Propertiesp. 107
9.8 Key Termsp. 108
10 Stereolithographyp. 110
10.1 The Stereolithography Apparatusp. 110
10.2 Stereolithography Apparatus Operationp. 113
10.3 Relation to Other Rapid Prototyping Technologiesp. 114
10.4 Applications of Stereolithography Partsp. 115
10.5 Advantages and Disadvantagesp. 116
10.6 Key Termsp. 116
11 Selective Laser Sinteringp. 118
11.1 History of Selective Laser Sinteringp. 118
11.2 Selective Laser Sintering Technologyp. 118
11.3 Purpose of Selective Laser Sinteringp. 120
11.4 Current State of Selective Laser Sinteringp. 121
11.5 Impact of the Technologyp. 129
11.6 Interrelation with Other Technologiesp. 130
11.7 Future of the Selective Laser Sintering Technologyp. 130
11.8 System Updatep. 131
11.9 Key Termsp. 131
12 Laser Engineered Net Shapingp. 132
12.1 Build Materialsp. 132
12.2 Build Processp. 132
12.3 System Statisticsp. 135
12.4 Postprocessingp. 135
12.5 Materials Propertiesp. 136
12.6 Typical Usesp. 136
12.7 Advantages and Disadvantagesp. 137
13 Pro Metal Systemp. 138
13.1 Pro Metal System Hardwarep. 138
13.2 Pro Metal Operationp. 140
13.3 Build Techniquep. 141
13.4 Postprocessingp. 142
13.5 Typical Uses of Pro Metalp. 143
13.6 Materials Propertiesp. 146
13.7 Advantages and Disadvantages of Pro Metalp. 146
13.8 Key Termsp. 146
14 Other Functional Rapid Prototyping Processesp. 148
14.1 Precision Optical Manufacturingp. 148
14.2 Laser Additive Manufacturing Processp. 149
14.3 Topographic Shell Fabricationp. 150
14.4 Direct Shell Productionp. 151
Unit III Secondary Rapid Prototyping Applicationsp. 153
15 Casting Processesp. 154
15.1 Investment Castingp. 154
15.2 Sand Castingp. 157
15.3 Permanent-mold Castingp. 158
16 Rapid Toolingp. 160
16.1 Direct Rapid Prototyping Toolingp. 160
16.2 Silicone Rubber Toolingp. 161
16.3 Investment-cast Toolingp. 162
16.4 Powder Metallurgy Toolingp. 162
16.5 Spray Metal Toolingp. 163
16.6 Desktop Machiningp. 165
17 Reverse Engineering Using Rapid Prototypingp. 166
17.1 Processp. 166
17.2 Other Reverse Engineering Applicationsp. 167
18 Case Study: Wind-tunnel Testing with Rapid Prototyped Modelsp. 169
18.1 Abstractp. 169
18.2 Introductionp. 170
18.3 Geometryp. 172
18.4 Model Constructionp. 172
18.5 Facilityp. 175
18.6 Testp. 177
18.7 Resultsp. 178
18.8 Baseline Modelsp. 178
18.9 Replacement Partsp. 179
18.10 Cost and Timep. 179
18.11 Accuracy and Uncertaintyp. 179
18.12 Conclusionsp. 181
18.13 Bibliographyp. 183
19 Case Study: Rapid Prototyping Applied to Investment Castingp. 184
19.1 Introductionp. 184
19.2 Background/Approachp. 184
19.3 Test Resultsp. 185
19.4 Cost Comparisonsp. 193
19.5 Conclusionsp. 193
19.6 Key Termsp. 195
19.7 Referencesp. 197
Unit IV International Rapid Prototyping Systemsp. 198
20 RP Systems in Israelp. 199
20.1 Solid Ground Curingp. 199
20.2 The Objet Quadrap. 200
21 Rapid Prototyping Systems in Japanp. 203
21.1 Stereolithographyp. 203
21.2 Laminated Object Manufacturingp. 203
21.3 Other Rapid Prototyping Systemsp. 203
22 Rapid Prototyping Systems in Europep. 206
22.1 Germanyp. 206
22.2 Swedenp. 207
22.3 Belgiump. 208
23 Rapid Prototyping Systems in Chinap. 209
23.1 Stereolithographyp. 209
23.2 Laminated Object Manufacturingp. 210
23.3 Fused Deposition Modelingp. 210
23.4 Selective Laser Sinteringp. 210
23.5 Multifunctional Rapid Prototyping Manufacturing Systemp. 210
Appendicesp. 212
Appendix A Rapid Prototyping System Cross Reference Chartp. 213
Appendix B Direction of the Rapid Prototyping Industryp. 215
B.1 Design Technologiesp. 216
B.2 Materials and Fabrication Technologiesp. 216
B.3 Integration Technologiesp. 218
B.4 Summaryp. 219
Appendix C Recommended Rapid Prototyping Publicationsp. 220
Indexp. 223