Skip to:Content
|
Bottom
Cover image for Flexible robotics : applications to multiscale manipulations
Title:
Flexible robotics : applications to multiscale manipulations
Publication Information:
London : Wiley, 2013
Physical Description:
xviii, 384 p. : ill. ; 25 cm.
ISBN:
9781848215207

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010322014 TJ211 F54 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data.

Contents

1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet.
2. Flexible Structures' Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet.
3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay.
4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe.
5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard.
6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier.
7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard.
8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard.
9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri.
10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche.

About the Authors

Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France.
Nicolas Chaillet, FEMTO-ST, Besançon, France.
Stéphane Régnier, ISIR, UPMC, Paris, France.


Author Notes

Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France.
Nicolas Chaillet, FEMTO-ST, Besanon, France.
Stphane Rgnier, ISIR, UPMC, Paris, France.


Table of Contents

Mathieu Grossard and Stéphane Régnier and Nicolas ChailletMathieu Grossard and Mehdi Boukallel and Stéphane Régnier and Nicolas ChailletMathieu Grossard and Arnaud Hubert and Stéphane Régnier and Nicolas ChailletNandish R. Calchand and Arnaud Hubert and Yann Le Gorrec and Hector Ramirez EstayYassine Haddab and Vincent Chalvet and Micky RakotondrabeJavier Martin Amezaga and Mathieu GrossardMehdi Boukallel and Hanna Yousef and Christelle Godin and Caroline CoutierReymond Clavel and Simon Henein and Murielle RichardMaria Makarov and Mathieu GrossardFrédéric Boyer and Ayman BelkhiriHoussem Halalchi and Loïc Cuvillon and Guillaume Mercère and Edouard Laroche
Introductionp. xiii
Chapter 1 Design of Integrated Flexible Structures for Micromanipulationp. 1
1.1 Design and control problems for flexible structures in micromanipulationp. 2
1.1.1 Characteristics of manipulation on the microscalep. 3
1.1.2 Reliability and positioning precisionp. 5
1.1.3 Micromanipulation stationp. 7
1.1.4 Difficulties related to controlling robotic micromanipulatorsp. 9
1.2 Integrated design in micromechatronicsp. 11
1.2.1 Modeling integrated flexible structuresp. 12
1.2.2 Active transduction materialsp. 12
1.2.3 Multiphysical modelsp. 17
1.2.4 Optimization strategies for micromechatronic structuresp. 20
1.3 Example of an optimal synthesis method for flexible piezoelectric transduction structuresp. 25
1.3.1 Block methodp. 26
1.3.2 General design approachp. 27
1.3.3 Finite element modelp. 28
1.3.4 Example applications: designing integrated flexible microgrippersp. 29
1.4 Conclusionp. 31
1.5 Bibliographyp. 32
Chapter 2 Flexible Structures' Representation and Notable Properties in Controlp. 37
2.1 State-space representation of flexible structuresp. 38
2.1.1 Dynamic representationp. 38
2.1.2 Conservative model in the modal basisp. 39
2.1.3 Damping characteristicsp. 41
2.1.4 Solving equationsp. 43
2.1.5 State-space representation in the modal basisp. 44
2.1.6 Modal identification and controlp. 45
2.2 The concepts of modal controllability and observabilityp. 47
2.2.1 Overview of state controllability and observabilityp. 47
2.2.2 Interpretations of Gramians in the case of flexible structuresp. 50
2.2.3 Writing Gramians in the modal basisp. 52
2.3 Reduction of modelsp. 52
2.3.1 Balanced realizationp. 52
2.3.2 The Moore reduction techniquep. 53
2.3.3 Modal and balanced realizations equivalence for flexible structuresp. 55
2.4 Contribution of modal analysis criteria to topological optimizationp. 56
2.4.1 Practical considerations in model reductionp. 56
2.4.2 Actuator/sensor collocationp. 58
2.4.3 Guiding the frequential response of the control transfer in the context of topological optimizationp. 62
2.4.4 Modal observability criterion in structure optimizationp. 62
2.4.5 High authority control (HAC)/low authority control (LAC) controlp. 65
2.5 Conclusionp. 68
2.6 Bibliographyp. 69
Chapter 3 Structured Energy Approach for the Modeling of Flexible Structuresp. 73
3.1 Introductionp. 73
3.2 Finite-dimensional systemsp. 75
3.2.1 Classic energy modelsp. 76
3.2.2 Classic network modelsp. 79
3.2.3 Port-Hamiltonian formulationp. 89
3.3 Infinite-dimensional systemsp. 95
3.3.1 Introductory examplep. 95
3.3.2 Class of considered systemsp. 101
3.3.3 Infinite-dimensional Dirac structurep. 102
3.3.4 Boundary control systems and stabilizationp. 106
3.4 Conclusionp. 111
3.5 Bibliographyp. 112
Chapter 4 Open-Loop Control Approaches to Compliant Micromanipulatorsp. 115
4.1 Introductionp. 115
4.2 Piezoelectric microactuatorsp. 116
4.2.1 Compliant piezoelectric actuatorsp. 116
4.2.2 Hysteresis modeling and compensationp. 119
4.2.3 Modeling and compensating for badly damped vibrationp. 122
4.3 Thermal microactuatorsp. 128
4.3.1 Thermal actuatorsp. 128
4.3.2 Modeling and identificationp. 131
4.3.3 Bistable module using thermal actuatorsp. 136
4.3.4 Controlp. 139
4.3.5 Digital microrobotp. 139
4.4 Conclusionp. 142
4.5 Bibliographyp. 142
Chapter 5 Mechanical Flexibility and the Design of Versatile and Dexterous Grippersp. 145
5.1 Robotic gripper systemsp. 146
5.1.1 Robotic gripperp. 146
5.1.2 Versatile gripping conceptp. 148
5.1.3 Dexterous manipulation conceptp. 149
5.2 Actuation architecture and elastic elementsp. 153
5.2.1 Actuation systemp. 153
5.2.2 Modeling elastic transmissions in "simple-effect" actuation architecturep. 161
5.3 Structural flexibilityp. 166
5.3.1 Compliant joints and precision issuesp. 166
5.3.2 Design example of an interphalangeal joint for pluridigital manipulationp. 169
5.3.3 Deformable contact surfacesp. 173
5.4 Conclusionp. 177
5.5 Bibliographyp. 178
Chapter 6 Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulationp. 181
6.1 Introductionp. 181
6.2 Human dexterous manipulation as a basis for robotic manipulationp. 183
6.2.1 Human hand and finger movementsp. 183
6.2.2 Tactile perception in the human handp. 184
6.2.3 Functional specifications of tactile sensing for dexterous manipulation for roboticsp. 186
6.3 Technologies for tactile sensingp. 188
6.3.1 Resistive sensorsp. 188
6.3.2 Conductive polymers and fabricsp. 195
6.3.3 Conductive elastomer compositesp. 197
6.3.4 Conductive fluidsp. 201
6.3.5 Capacitive sensorsp. 202
6.3.6 Piezoelectric sensorsp. 206
6.3.7 Optical sensorsp. 209
6.3.8 Organic field-effect transistorsp. 212
6.4 A comparison of sensor solutions and sensing techniquesp. 213
6.5 The Nail sensorp. 214
6.5.1 Description and working principlep. 217
6.5.2 Manufacturing processp. 218
6.6 From the Nail sensor to tactile skinp. 220
6.6.1 Flexible Nail sensor arraysp. 221
6.6.2 Dimensioning, materials and fabrication processp. 221
6.6.3 Signal addressing management: a challenge for large arrays and system integrationp. 224
6.7 From tactile skin to artificial touch systemp. 225
6.7.1 Sensor protection and force transmissionp. 225
6.7.2 Texture analysis device based on the Nail sensorp. 226
6.8 Applications and signal analysisp. 228
6.8.1 Surface discriminationp. 228
6.8.2 Roughness estimationp. 231
6.8.3 Sensory analysis of materialsp. 232
6.9 Summary and conclusionp. 233
6.10 Bibliographyp. 235
Chapter 7 Flexures for High-Precision Manipulation Robotsp. 243
7.1 High-precision industrial robots backgroundp. 243
7.1.1 Applicationsp. 243
7.1.2 Constraints linked to high-precision and proposed solution principlesp. 245
7.1.3 Several examples of ultra-high-precision robotsp. 246
7.2 Kinematic analysis of simple flexuresp. 248
7.2.1 Flexure designp. 248
7.2.2 Degrees of freedom of an elementary jointp. 248
7.2.3 Parasitic movementsp. 250
7.2.4 Rectilinear and circular flexuresp. 259
7.3 Design method of parallel modular kinematics for flexuresp. 260
7.3.1 Motivationp. 260
7.3.2 Modular design methodologyp. 261
7.3.3 Application of the concept to very high-precisionp. 263
7.3.4 Flexure-based mechanical design of bricksp. 264
7.4 Example of the Legolas 5 robot designp. 264
7.4.1 Flexure-based mechanical designp. 267
7.4.2 Prototype of the Legolas 5 robotp. 270
7.4.3 Very high-precision modular parallel robot familyp. 271
7.5 Bibliographyp. 273
Chapter 8 Modeling and Motion Control of Serial Robots with Flexible Jointsp. 275
8.1 Introductionp. 275
8.2 Modelingp. 276
8.2.1 Sources of flexibilitiesp. 276
8.2.2 Dynamic modelp. 277
8.2.3 Reduced dynamic model propertiesp. 280
8.2.4 Simplified case studyp. 281
8.3 Identificationp. 284
8.3.1 Identification from additional sensorsp. 286
8.3.2 Identification from motor measurements onlyp. 289
8.3.3 Discussion and openingsp. 293
8.4 Motion controlp. 295
8.4.1 Singular perturbation approachp. 296
8.4.2 Linearization and compensationsp. 299
8.4.3 Particular control methodsp. 304
8.5 Conclusionp. 310
8.6 Bibliographyp. 310
Chapter 9 Dynamic Modeling of Deformable Manipulatorsp. 321
9.1 Introductionp. 321
9.2 Newton-Euler model of an elastic bodyp. 324
9.2.1 Poincaré equations applied to a rigid body: Newton-Euler modelp. 325
9.2.2 Poincaré equations applied to the elastic body in the floating framep. 329
9.2.3 Deformation parameterizingp. 334
9.3 Kinematic model of a deformable manipulatorp. 337
9.4 Dynamic model of a deformable manipulatorp. 340
9.5 Examplep. 342
9.5.1 Descriptionp. 342
9.5.2 Definition of imposed movementsp. 344
9.6 Conclusionp. 346
9.7 Bibliographyp. 346
Chapter 10 Robust Control of Robotic Manipulators with Structural Flexibilitiesp. 349
10.1 Introductionp. 349
10.2 LTI methodologyp. 350
10.2.1 A medical robotic problemp. 350
10.2.2 Modeling and identificationp. 351
10.2.3 H∞ controlp. 354
10.2.4 Assessment of the linear controlp. 357
10.3 Toward an LPV methodologyp. 359
10.3.1 A manipulator with two flexible segmentsp. 359
10.3.2 Identification of an LPV modelp. 363
10.3.3 Analysis and synthesis methods for LPV systemsp. 368
10.3.4 Application to the flexible manipulator controlp. 374
10.4 Conclusionp. 379
10.5 Bibliographyp. 379
List of Authorsp. 383
Indexp. 385
Go to:Top of Page