Cover image for Robotic navigation and mapping with radar
Title:
Robotic navigation and mapping with radar
Publication Information:
Boston ; London : Artech House, c2012
Physical Description:
xxix, 346 p. : ill. ; 26 cm.
ISBN:
9781608074822
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010312138 TJ211.415 R63 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Focusing on autonomous robotic applications, this resource offers a practical treatment of short-range radar processing for reliable object detection at the ground level. It demonstrates probabilistic radar models and detection algorithms specifically for robotic land vehicles.


Author Notes

Martin Adams is a professor in the department of electrical engineering and a member of the Advanced Mining Technology Centre (AMTC) at the University of Chile. He received his D.Phil. in engineering science at the University of Oxford.
John Mullane is a research scientist at Projective Space Pte. Ltd., Singapore. He holds a Ph.D. in electrical and electronic engineering from Nanyang Technological University.
Ehi Jose is a research scientist at Projective Space Pte. Ltd., Singapore. He holds a Ph.D. in electrical and electronic engineering from Nanyang Technological University.
Ba-Ngu Vo is a professor at the School of Electrical, Electronic and Computer Engineering at the University of Western Australia. He received his Ph.D. in engineering from Curtin University.


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xv
Acronymsp. xvii
Nomenclaturep. xxi
Chapter 1 Introductionp. 1
1.1 Isn't Navigation and Mapping with Radar Solved?p. 1
1.1.1 Applying Missile/Aircraft Guidance Technologies to Robotic Vehiclesp. 2
1.1.2 Placing Autonomous Navigation of Robotic Vehicles into Perspectivep. 11
1.2 Why Radar in Robotics? Motivationp. 12
1.3 The Direction of Radar-Based Robotics Researchp. 19
1.3.1 Mining Applicationsp. 19
1.3.2 Intelligent Transportation System Applicationsp. 21
1.3.3 Land-Based SLAM Applicationsp. 24
1.3.4 Coastal Marine Applicationsp. 25
1.4 Structure of the Bookp. 27
Referencep. 28
Part I Fundamentals of Radar and Robotic Navigationp. 33
Chapter 2 A Brief Overview of Radar Fundamentalsp. 35
2.1 Introductionp. 35
2.2 Radar Measurementsp. 36
2.3 The Radar Equationp. 38
2.4 Radar Signal Attenuationp. 40
2.5 Measurement Power Compression and Range Compensationp. 43
2.5.1 Logarithmic Compressionp. 44
2.5.2 Range Compensationp. 44
2.5.3 Logarithmic Compression and Range Compensation During Target Absencep. 45
2.5.4 Logarithmic Compression and Range Compensation During Target Presencep. 47
2.6 Radar-Range Measurement Techniquesp. 51
2.6.1 Time-of-Flight (TOF) Pulsed Radarp. 51
2.6.2 Frequency Modulated, Continuous Wave (FMCW) Radarp. 53
2.7 Sources of Uncertainty in Radarp. 58
2.7.1 Sources of Uncertainty Common to All Radar Typesp. 59
2.8 Uncertainty Specific to TOF and FMCW Radarp. 68
2.8.1 Uncertainty in TOF Radarsp. 68
2.8.2 Uncertainty in FMCW Radarsp. 70
2.9 Polar to Cartesian Data Transformationp. 72
2.9.1 Nearest Neighbor Polar to Cartesian Data Conversionp. 73
2.9.2 Weighted Polar to Cartesian Data Conversionp. 73
2.10 Summaryp. 76
2.11 Bibliographical Remarksp. 76
2.11.1 Extensions to the Radar Equationp. 76
2.11.2 Signal Propagation/Attenuationp. 77
2.11.3 Range Measurement Methodsp. 78
2.11.4 Uncertainty in Radarp. 78
Referencesp. 79
Chapter 3 An Introduction to Detection Theoryp. 81
3.1 Introductionp. 81
3.2 Concepts of Detection Theoryp. 82
3.3 Different Approaches to Target Detectionp. 84
3.3.1 Non-adaptive Detectionp. 84
3.3.2 Hypothesis Free Modelingp. 85
3.3.3 Stochastic-Based Adaptive Detectionp. 86
3.4 Detection Theory with Known Noise Statisticsp. 87
3.4.1 Constant P CFAR fa with Known Noise Statisticsp. 87
3.4.2 Probability of Detection P CFAR n with Known Noise Statisticsp. 88
3.4.3 Probabilities of Missed Detection P CFAR MD and Noise P CFAR n with Known Noise Statisticsp. 89
3.5 Detection with Unknown Noise Statistics-Adaptive CFAR Processorsp. 89
3.5.1 Cell Averaging-CA-CFAR Processorsp. 90
3.5.2 Ordered Statistics-OS-CFAR Processorsp. 94
3.6 Summaryp. 100
3.7 Bibliographical Remarksp. 101
Referencesp. 102
Chapter 4 Robotic Navigation and Mappingp. 105
4.1 Introductionp. 105
4.2 General Bayesian SLAM-The Joint Problemp. 107
4.2.1 Vehicle State Representationp. 109
4.2.2 Map Representationp. 112
4.3 Solving Robot Mapping and Localization Individuallyp. 115
4.3.1 Probabilistic Robotic Mappingp. 116
4.3.2 Probabilistic Robotic Localizationp. 116
4.4 Popular Robotic Mapping Solutionsp. 117
4.4.1 Grid-Based Robotic Mapping (GBRM)p. 117
4.4.2 Feature-Based Robotic Mapping (FBRM)p. 118
4.5 Relating Sensor Measurements to Robotic Mapping and SLAMp. 120
4.5.1 Relating the Spatial Measurement Interpretation to the Mapping/SLAM Statep. 121
4.5.2 Relating the Detection Measurement Interpretation to the Mapping/SLAM Statep. 122
4.6 Popular FB-SLAM Solutionsp. 124
4.6.1 Bayesian FB-SLAM-Approximate Gaussian Solutionsp. 124
4.6.2 Feature Associationp. 126
4.6.3 Bayesian FB-SLAM-Approximate Particle Solutionsp. 128
4.6.4 A Factorized Solution to SLAM (FastSLAM)p. 129
4.6.5 Multi-Hypothesis (MH) FastSLAMp. 130
4.6.6 General Comments on Vector-Based FB SLAMp. 130
4.7 FBRM and SLAM with Random Finite Setsp. 133
4.7.1 Motivation: Why Random Finite Setsp. 133
4.7.2 RFS Representations of State and Detected Featuresp. 135
4.7.3 Bayesian Formulation with a Finite Set Feature Mapp. 137
4.7.4 The Probability Hypothesis Density (PHD) Estimatorp. 138
4.7.5 The PHD Filterp. 142
4.8 SLAM and FBRM Performance Metricsp. 145
4.8.1 Vehicle State Estimate Evaluationp. 145
4.8.2 Map Estimate Evaluationp. 145
4.8.3 Evaluation of FBRM and SLAM with the Second Order Wasserstein Metricp. 146
4.9 Summaryp. 148
4.10 Bibliographical Remarksp. 149
4.10.1 Grid-Based Robotic Mapping (GBRM)p. 149
4.10.2 Gaussian Approximations to Bayes Theoremp. 150
4.10.3 Non-Parametric Approximations to Bayesian FB-SLAMp. 152
4.10.4 Other Approximations to Bayesian FB-SLAMp. 152
4.10.5 Feature Association and Managementp. 155
4.10.6 Random Finite Sets (RFSs)p. 156
4.10.7 SLAM and FBRM Evaluation Metricsp. 156
Referencesp. 157
Part II Radar Modeling and Scan Integrationp. 163
Chapter 5 Predicting and Simulating FMCW Radar Measurementsp. 165
5.1 Introductionp. 165
5.2 FMCW Radar Detection in the Presence of Noisep. 166
5.3 Noise Distributions During Target Absence and Presencep. 168
5.3.1 Received Power Noise Estimationp. 168
5.3.2 Range Noise Estimationp. 169
5.4 Predicting Radar Measurementsp. 173
5.4.1 A-Scope Prediction Based on Expected Target RCS and Rangep. 173
5.4.2 A-Scope Prediction Based on Robot Motionp. 174
5.5 Quantitative Comparison of Predicted and Actual Measurementsp. 176
5.6 A-scope Prediction Resultsp. 177
5.6.1 Single Bearing A-Scope Predictionp. 177
5.6.2 360° Scan Multiple A-Scope Prediction, Based on Robot Motionp. 179
5.7 Summaryp. 188
5.8 Bibliographical Remarksp. 192
Referencesp. 193
Chapter 6 Reducing Detection Errors and Noise with Multiple Radar Scansp. 195
6.1 Introductionp. 195
6.2 Radar Data in an Urban Environmentp. 196
6.2.1 Landmark Detection with Single Scan CA-CFARp. 198
6.3 Classical Scan Integration Methodsp. 198
6.3.1 Coherent and Noncoherent Integrationp. 198
6.3.2 Binary Integration Detectionp. 201
6.4 Integration Based on Target Presence Probability (TPP) Estimationp. 204
6.5 False Alarm and Detection Probabilities for the TPP Estimatorp. 206
6.5.1 TPP Response to Noise: P TPP fap. 206
6.5.2 TPP Response to a Landmark and Noise: P TPP Dp. 209
6.5.3 Choice of ¿ p , T TTP (¿ p ,l) and lp. 210
6.5.4 Numerical Method for Determining T TPP (¿ p , l ) and P TTP Dp. 211
6.6 A Comparison of Scan Integration Methodsp. 213
6.7 A Note on Multi-Path Reflectionsp. 214
6.8 TPP Integration of Radar in an Urban Environmentp. 215
6.8.1 Qualitative Assessment of TPP Applied to A-Scope Informationp. 215
6.8.2 Quantitative Assessment of TPP Applied to Complete Scansp. 215
6.8.3 A Qualitative Assessment of an Entire Parcking Lot Scenep. 221
6.9 Recursive A-Scope Noise Reductionp. 223
6.9.1 Single A-Scope Noise Subtractionp. 225
6.9.2 Multiple A-Scope-Complete Scan Noise Subtractionp. 227
6.10 Summaryp. 228
6.11 Bibliographical Remarksp. 229
Referencesp. 230
Part III Robotic Mapping with Known Vehicle Locationp. 233
Chapter 7 Grid-Based Robotic Mapping with Detection Likelihood Filteringp. 235
7.1 Introductionp. 235
7.2 The Grid-Based Robotic Mapping (GBRM) Problemp. 237
7.2.1 GBRM Based on Range Measurementsp. 239
7.2.2 GBRM with Detection Measurementsp. 241
7.2.3 Detection versus Range Measurement Modelsp. 243
7.3 Mapping with Unknown Measurement Likelihoodsp. 245
7.3.1 Data Formatp. 245
7.3.2 GBRM Algorithm Overviewp. 246
7.3.3 Constant False Alarm Rate (CFAR) Detectorp. 247
7.3.4 Map Occupancy and Detection Likelihood Estimatorp. 247
7.3.5 Incorporation of the OS-CFAR Processorp. 249
7.4 GBRM-ML Particle Filter Implementationp. 250
7.5 Comparisons of Detection and Spatial-Based GBRMp. 251
7.5.1 Dataset 1: Synthetic Data, Single Landmarkp. 251
7.5.2 Dataset 2: Real Experiments in the Parking Lot Environmentp. 252
7.5.3 Dataset 3: A Campus Environmentp. 259
7.6 Summaryp. 261
7.7 Bibliographical Remarksp. 262
Referencesp. 263
Chapter 8 Feature-Based Robotic Mapping with Random Finite Setsp. 267
8.1 Introductionp. 267
8.2 The Probability Hypothesis Density (PHD)-FBRM Filterp. 268
8.3 PHD-FBRM Filter Implementationp. 269
8.3.1 The FBRM New Feature Proposal Strategyp. 271
8.3.2 Gaussian Management and State Estimationp. 272
8.3.3 GMM-PHD-FBRM Pseudo Codep. 274
8.4 PHD-FBRM Computational Complexityp. 275
8.5 Analysis of the PHD-FBRM Filterp. 275
8.6 Summaryp. 279
8.7 Bibliographical Remarksp. 280
Referencesp. 281
Part IV Simultaneous Localization and Mappingp. 283
Chapter 9 Radar-Based SLAM with Random Finite Setsp. 285
9.1 Introductionp. 285
9.2 SLAM with the PHD Filterp. 286
9.2.1 The Factorized RFS-SLAM Recursionp. 286
9.2.2 PHD Mapping-Rao-Blackwellizationp. 287
9.2.3 PHD-SLAMp. 288
9.3 Implementing the RB-PHD-SLAM Filterp. 290
9.3.1 PHD Mapping-Implementationp. 290
9.3.2 The Vehicle Trajectory-Implementationp. 292
9.3.3 Estimating the Mapp. 292
9.3.4 GMM-PHD-SLAM Pseudo Codep. 293
9.4 RB-PHD-SLAM Computational Complexityp. 293
9.5 Radar-Based Comparisons of RFS and Vector-Based SLAMp. 295
9.6 Summaryp. 299
9.7 Bibliographical Remarksp. 299
Referencesp. 300
Chapter 10 X-Band Radar-Based SLAM in an Off-Shore Environmentp. 301
10.1 Introductionp. 301
10.2 The ASC and the Coastal Environmentp. 303
10.3 Marine Radar Feature Extractionp. 305
10.3.1 Adaptive Coastal Feature Detection-OS-CFARp. 306
10.3.2 Image-Based Smoothing-Gaussian Filteringp. 308
10.3.3 Image-Based Thresholdingp. 311
10.3.4 Image-Based Clusteringp. 311
10.3.5 Feature Labelingp. 313
10.4 The Marine Based SLAM Algorithmsp. 314
10.4.1 The ASC Process Modelp. 314
10.4.2 RFS SLAM with the PHD Filterp. 314
10.4.3 NN-EKF-SLAM Implementationp. 317
10.4.4 Multi-Hyphothesis (MH) FastSLAM Implementationp. 317
10.5 Comparisons of SLAM Concepts at Seap. 318
10.5.1 SLAM Trial 1-Comparing PHD and NN-EKF-SLAMp. 318
10.5.2 SLAM Trial 2-Comparing RB-PHD-SLAM and MH-FastSLAMp. 322
10.6 Summaryp. 324
10.7 Bibliographical Remarksp. 326
Referencesp. 326
Appendix A The Navtech FMCW MMW Radar Specificationsp. 329
Appendix B Derivation of g(Z k |Z k-1 ,X k ) for the RB-PHD-SLAM Filterp. 331
B.1 The Empty Strategyp. 331
B.2 The Single Feature Strategyp. 332
Appendix c NN-EKF and FastSLAM Feature Managementp. 333
Indexp. 335