Cover image for Geometry, topology, and physics
Title:
Geometry, topology, and physics
Personal Author:
Publication Information:
Bristol : Adam Hilger, 1990
ISBN:
9780852740941

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000001532898 QA641.N34 1990 Open Access Book Book
Searching...

On Order

Table of Contents

Preface to the First Editionp. xvii
Preface to the Second Editionp. xix
How to Read this Bookp. xxi
Notation and Conventionsp. xxii
1 Quantum Physicsp. 1
1.1 Analytical mechanicsp. 1
1.1.1 Newtonian mechanicsp. 1
1.1.2 Lagrangian formalismp. 2
1.1.3 Hamiltonian formalismp. 5
1.2 Canonical quantizationp. 9
1.2.1 Hilbert space, bras and ketsp. 9
1.2.2 Axioms of canonical quantizationp. 10
1.2.3 Heisenberg equation, Heisenberg picture and Schrodinger picturep. 13
1.2.4 Wavefunctionp. 13
1.2.5 Harmonic oscillatorp. 17
1.3 Path integral quantization of a Bose particlep. 19
1.3.1 Path integral quantizationp. 19
1.3.2 Imaginary time and partition functionp. 26
1.3.3 Time-ordered product and generating functionalp. 28
1.4 Harmonic oscillatorp. 31
1.4.1 Transition amplitudep. 31
1.4.2 Partition functionp. 35
1.5 Path integral quantization of a Fermi particlep. 38
1.5.1 Fermionic harmonic oscillatorp. 39
1.5.2 Calculus of Grassmann numbersp. 40
1.5.3 Differentiationp. 41
1.5.4 Integrationp. 42
1.5.5 Delta-functionp. 43
1.5.6 Gaussian integralp. 44
1.5.7 Functional derivativep. 45
1.5.8 Complex conjugationp. 45
1.5.9 Coherent states and completeness relationp. 46
1.5.10 Partition function of a fermionic oscillatorp. 47
1.6 Quantization of a scalar fieldp. 51
1.6.1 Free scalar fieldp. 51
1.6.2 Interacting scalar fieldp. 54
1.7 Quantization of a Dirac fieldp. 55
1.8 Gauge theoriesp. 56
1.8.1 Abelian gauge theoriesp. 56
1.8.2 Non-Abelian gauge theoriesp. 58
1.8.3 Higgs fieldsp. 60
1.9 Magnetic monopolesp. 60
1.9.1 Dirac monopolep. 61
1.9.2 The Wu-Yang monopolep. 62
1.9.3 Charge quantizationp. 62
1.10 Instantonsp. 63
1.10.1 Introductionp. 63
1.10.2 The (anti-)self-dual solutionp. 64
Problemsp. 66
2 Mathematical Preliminariesp. 67
2.1 Mapsp. 67
2.1.1 Definitionsp. 67
2.1.2 Equivalence relation and equivalence classp. 70
2.2 Vector spacesp. 75
2.2.1 Vectors and vector spacesp. 75
2.2.2 Linear maps, images and kernelsp. 76
2.2.3 Dual vector spacep. 77
2.2.4 Inner product and adjointp. 78
2.2.5 Tensorsp. 80
2.3 Topological spacesp. 81
2.3.1 Definitionsp. 81
2.3.2 Continuous mapsp. 82
2.3.3 Neighbourhoods and Hausdorff spacesp. 82
2.3.4 Closed setp. 83
2.3.5 Compactnessp. 83
2.3.6 Connectednessp. 85
2.4 Homeomorphisms and topological invariantsp. 85
2.4.1 Homeomorphismsp. 85
2.4.2 Topological invariantsp. 86
2.4.3 Homotopy typep. 88
2.4.4 Euler characteristic: an examplep. 88
Problemsp. 91
3 Homology Groupsp. 93
3.1 Abelian groupsp. 93
3.1.1 Elementary group theoryp. 93
3.1.2 Finitely generated Abelian groups and free Abelian groupsp. 96
3.1.3 Cyclic groupsp. 96
3.2 Simplexes and simplicial complexesp. 98
3.2.1 Simplexesp. 98
3.2.2 Simplicial complexes and polyhedrap. 99
3.3 Homology groups of simplicial complexesp. 100
3.3.1 Oriented simplexesp. 100
3.3.2 Chain group, cycle group and boundary groupp. 102
3.3.3 Homology groupsp. 106
3.3.4 Computation of H[subscript 0](K)p. 110
3.3.5 More homology computationsp. 111
3.4 General properties of homology groupsp. 117
3.4.1 Connectedness and homology groupsp. 117
3.4.2 Structure of homology groupsp. 118
3.4.3 Betti numbers and the Euler-Poincare theoremp. 118
Problemsp. 120
4 Homotopy Groupsp. 121
4.1 Fundamental groupsp. 121
4.1.1 Basic ideasp. 121
4.1.2 Paths and loopsp. 122
4.1.3 Homotopyp. 123
4.1.4 Fundamental groupsp. 125
4.2 General properties of fundamental groupsp. 127
4.2.1 Arcwise connectedness and fundamental groupsp. 127
4.2.2 Homotopic invariance of fundamental groupsp. 128
4.3 Examples of fundamental groupsp. 131
4.3.1 Fundamental group of torusp. 133
4.4 Fundamental groups of polyhedrap. 134
4.4.1 Free groups and relationsp. 134
4.4.2 Calculating fundamental groups of polyhedrap. 136
4.4.3 Relations between H[subscript 1](K) and [pi subscript 1]([vertical bar]K[vertical bar])p. 144
4.5 Higher homotopy groupsp. 145
4.5.1 Definitionsp. 146
4.6 General properties of higher homotopy groupsp. 148
4.6.1 Abelian nature of higher homotopy groupsp. 148
4.6.2 Arcwise connectedness and higher homotopy groupsp. 148
4.6.3 Homotopy invariance of higher homotopy groupsp. 148
4.6.4 Higher homotopy groups of a product spacep. 148
4.6.5 Universal covering spaces and higher homotopy groupsp. 148
4.7 Examples of higher homotopy groupsp. 150
4.8 Orders in condensed matter systemsp. 153
4.8.1 Order parameterp. 153
4.8.2 Superfluid [superscript 4]He and superconductorsp. 154
4.8.3 General considerationp. 157
4.9 Defects in nematic liquid crystalsp. 159
4.9.1 Order parameter of nematic liquid crystalsp. 159
4.9.2 Line defects in nematic liquid crystalsp. 160
4.9.3 Point defects in nematic liquid crystalsp. 161
4.9.4 Higher dimensional texturep. 162
4.10 Textures in superfluid [superscript 3]He-Ap. 163
4.10.1 Superfluid [superscript 3]He-Ap. 163
4.10.2 Line defects and non-singular vortices in [superscript 3]He-Ap. 165
4.10.3 Shankar monopole in [superscript 3]He-Ap. 166
Problemsp. 167
5 Manifoldsp. 169
5.1 Manifoldsp. 169
5.1.1 Heuristic introductionp. 169
5.1.2 Definitionsp. 171
5.1.3 Examplesp. 173
5.2 The calculus on manifoldsp. 178
5.2.1 Differentiable mapsp. 179
5.2.2 Vectorsp. 181
5.2.3 One-formsp. 184
5.2.4 Tensorsp. 185
5.2.5 Tensor fieldsp. 185
5.2.6 Induced mapsp. 186
5.2.7 Submanifoldsp. 188
5.3 Flows and Lie derivativesp. 188
5.3.1 One-parameter group of transformationsp. 190
5.3.2 Lie derivativesp. 191
5.4 Differential formsp. 196
5.4.1 Definitionsp. 196
5.4.2 Exterior derivativesp. 198
5.4.3 Interior product and Lie derivative of formsp. 201
5.5 Integration of differential formsp. 204
5.5.1 Orientationp. 204
5.5.2 Integration of formsp. 205
5.6 Lie groups and Lie algebrasp. 207
5.6.1 Lie groupsp. 207
5.6.2 Lie algebrasp. 209
5.6.3 The one-parameter subgroupp. 212
5.6.4 Frames and structure equationp. 215
5.7 The action of Lie groups on manifoldsp. 216
5.7.1 Definitionsp. 216
5.7.2 Orbits and isotropy groupsp. 219
5.7.3 Induced vector fieldsp. 223
5.7.4 The adjoint representationp. 224
Problemsp. 224
6 de Rham Cohomology Groupsp. 226
6.1 Stokes' theoremp. 226
6.1.1 Preliminary considerationp. 226
6.1.2 Stokes' theoremp. 228
6.2 de Rham cohomology groupsp. 230
6.2.1 Definitionsp. 230
6.2.2 Duality of H[subscript r](M) and H[superscript r](M); de Rham's theoremp. 233
6.3 Poincare's lemmap. 235
6.4 Structure of de Rham cohomology groupsp. 237
6.4.1 Poincare dualityp. 237
6.4.2 Cohomology ringsp. 238
6.4.3 The Kunneth formulap. 238
6.4.4 Pullback of de Rham cohomology groupsp. 240
6.4.5 Homotopy and H[superscript 1](M)p. 240
7 Riemannian Geometryp. 244
7.1 Riemannian manifolds and pseudo-Riemannian manifoldsp. 244
7.1.1 Metric tensorsp. 244
7.1.2 Induced metricp. 246
7.2 Parallel transport, connection and covariant derivativep. 247
7.2.1 Heuristic introductionp. 247
7.2.2 Affine connectionsp. 249
7.2.3 Parallel transport and geodesicsp. 250
7.2.4 The covariant derivative of tensor fieldsp. 251
7.2.5 The transformation properties of connection coefficientsp. 252
7.2.6 The metric connectionp. 253
7.3 Curvature and torsionp. 254
7.3.1 Definitionsp. 254
7.3.2 Geometrical meaning of the Riemann tensor and the torsion tensorp. 256
7.3.3 The Ricci tensor and the scalar curvaturep. 260
7.4 Levi-Civita connectionsp. 261
7.4.1 The fundamental theoremp. 261
7.4.2 The Levi-Civita connection in the classical geometry of surfacesp. 262
7.4.3 Geodesicsp. 263
7.4.4 The normal coordinate systemp. 266
7.4.5 Riemann curvature tensor with Levi-Civita connectionp. 268
7.5 Holonomyp. 271
7.6 Isometries and conformal transformationsp. 273
7.6.1 Isometriesp. 273
7.6.2 Conformal transformationsp. 274
7.7 Killing vector fields and conformal Killing vector fieldsp. 279
7.7.1 Killing vector fieldsp. 279
7.7.2 Conformal Killing vector fieldsp. 282
7.8 Non-coordinate basesp. 283
7.8.1 Definitionsp. 283
7.8.2 Cartan's structure equationsp. 284
7.8.3 The local framep. 285
7.8.4 The Levi-Civita connection in a non-coordinate basisp. 287
7.9 Differential forms and Hodge theoryp. 289
7.9.1 Invariant volume elementsp. 289
7.9.2 Duality transformations (Hodge star)p. 290
7.9.3 Inner products of r-formsp. 291
7.9.4 Adjoints of exterior derivativesp. 293
7.9.5 The Laplacian, harmonic forms and the Hodge decomposition theoremp. 294
7.9.6 Harmonic forms and de Rham cohomology groupsp. 296
7.10 Aspects of general relativityp. 297
7.10.1 Introduction to general relativityp. 297
7.10.2 Einstein-Hilbert actionp. 298
7.10.3 Spinors in curved spacetimep. 300
7.11 Bosonic string theoryp. 302
7.11.1 The string actionp. 303
7.11.2 Symmetries of the Polyakov stringsp. 305
Problemsp. 307
8 Complex Manifoldsp. 308
8.1 Complex manifoldsp. 308
8.1.1 Definitionsp. 308
8.1.2 Examplesp. 309
8.2 Calculus on complex manifoldsp. 315
8.2.1 Holomorphic mapsp. 315
8.2.2 Complexificationsp. 316
8.2.3 Almost complex structurep. 317
8.3 Complex differential formsp. 320
8.3.1 Complexification of real differential formsp. 320
8.3.2 Differential forms on complex manifoldsp. 321
8.3.3 Dolbeault operatorsp. 322
8.4 Hermitian manifolds and Hermitian differential geometryp. 324
8.4.1 The Hermitian metricp. 325
8.4.2 Kahler formp. 326
8.4.3 Covariant derivativesp. 327
8.4.4 Torsion and curvaturep. 329
8.5 Kahler manifolds and Kahler differential geometryp. 330
8.5.1 Definitionsp. 330
8.5.2 Kahler geometryp. 334
8.5.3 The holonomy group of Kahler manifoldsp. 335
8.6 Harmonic forms and [characters not reproducible]-cohomology groupsp. 336
8.6.1 The adjoint operators [characters not reproducible] and [characters not reproducible]p. 337
8.6.2 Laplacians and the Hodge theoremp. 338
8.6.3 Laplacians on a Kahler manifoldp. 339
8.6.4 The Hodge numbers of Kahler manifoldsp. 339
8.7 Almost complex manifoldsp. 341
8.7.1 Definitionsp. 342
8.8 Orbifoldsp. 344
8.8.1 One-dimensional examplesp. 344
8.8.2 Three-dimensional examplesp. 346
9 Fibre Bundlesp. 348
9.1 Tangent bundlesp. 348
9.2 Fibre bundlesp. 350
9.2.1 Definitionsp. 350
9.2.2 Reconstruction of fibre bundlesp. 353
9.2.3 Bundle mapsp. 354
9.2.4 Equivalent bundlesp. 355
9.2.5 Pullback bundlesp. 355
9.2.6 Homotopy axiomp. 357
9.3 Vector bundlesp. 357
9.3.1 Definitions and examplesp. 357
9.3.2 Framesp. 359
9.3.3 Cotangent bundles and dual bundlesp. 360
9.3.4 Sections of vector bundlesp. 361
9.3.5 The product bundle and Whitney sum bundlep. 361
9.3.6 Tensor product bundlesp. 363
9.4 Principal bundlesp. 363
9.4.1 Definitionsp. 363
9.4.2 Associated bundlesp. 370
9.4.3 Triviality of bundlesp. 372
Problemsp. 372
10 Connections on Fibre Bundlesp. 374
10.1 Connections on principal bundlesp. 374
10.1.1 Definitionsp. 375
10.1.2 The connection one-formp. 376
10.1.3 The local connection form and gauge potentialp. 377
10.1.4 Horizontal lift and parallel transportp. 381
10.2 Holonomyp. 384
10.2.1 Definitionsp. 384
10.3 Curvaturep. 385
10.3.1 Covariant derivatives in principal bundlesp. 385
10.3.2 Curvaturep. 386
10.3.3 Geometrical meaning of the curvature and the Ambrose-Singer theoremp. 388
10.3.4 Local form of the curvaturep. 389
10.3.5 The Bianchi identityp. 390
10.4 The covariant derivative on associated vector bundlesp. 391
10.4.1 The covariant derivative on associated bundlesp. 391
10.4.2 A local expression for the covariant derivativep. 393
10.4.3 Curvature rederivedp. 396
10.4.4 A connection which preserves the inner productp. 396
10.4.5 Holomorphic vector bundles and Hermitian inner productsp. 397
10.5 Gauge theoriesp. 399
10.5.1 U(1) gauge theoryp. 399
10.5.2 The Dirac magnetic monopolep. 400
10.5.3 The Aharonov-Bohm effectp. 402
10.5.4 Yang-Mills theoryp. 404
10.5.5 Instantonsp. 405
10.6 Berry's phasep. 409
10.6.1 Derivation of Berry's phasep. 410
10.6.2 Berry's phase, Berry's connection and Berry's curvaturep. 411
Problemsp. 418
11 Characteristic Classesp. 419
11.1 Invariant polynomials and the Chern-Weil homomorphismp. 419
11.1.1 Invariant polynomialsp. 420
11.2 Chern classesp. 426
11.2.1 Definitionsp. 426
11.2.2 Properties of Chern classesp. 428
11.2.3 Splitting principlep. 429
11.2.4 Universal bundles and classifying spacesp. 430
11.3 Chern charactersp. 431
11.3.1 Definitionsp. 431
11.3.2 Properties of the Chern charactersp. 434
11.3.3 Todd classesp. 435
11.4 Pontrjagin and Euler classesp. 436
11.4.1 Pontrjagin classesp. 436
11.4.2 Euler classesp. 439
11.4.3 Hirzebruch L-polynomial and A-genusp. 442
11.5 Chern-Simons formsp. 443
11.5.1 Definitionp. 443
11.5.2 The Chern-Simons form of the Chern characterp. 444
11.5.3 Cartan's homotopy operator and applicationsp. 445
11.6 Stiefel-Whitney classesp. 448
11.6.1 Spin bundlesp. 449
11.6.2 Cech cohomology groupsp. 449
11.6.3 Stiefel-Whitney classesp. 450
12 Index Theoremsp. 453
12.1 Elliptic operators and Fredholm operatorsp. 453
12.1.1 Elliptic operatorsp. 454
12.1.2 Fredholm operatorsp. 456
12.1.3 Elliptic complexesp. 457
12.2 The Atiyah-Singer index theoremp. 459
12.2.1 Statement of the theoremp. 459
12.3 The de Rham complexp. 460
12.4 The Dolbeault complexp. 462
12.4.1 The twisted Dolbeault complex and the Hirzebruch-Riemann-Roch theoremp. 463
12.5 The signature complexp. 464
12.5.1 The Hirzebruch signaturep. 464
12.5.2 The signature complex and the Hirzebruch signature theoremp. 465
12.6 Spin complexesp. 467
12.6.1 Dirac operatorp. 468
12.6.2 Twisted spin complexesp. 471
12.7 The heat kernel and generalized [zeta]-functionsp. 472
12.7.1 The heat kernel and index theoremp. 472
12.7.2 Spectral [zeta]-functionsp. 475
12.8 The Atiyah-Patodi-Singer index theoremp. 477
12.8.1 [eta]-invariant and spectral flowp. 477
12.8.2 The Atiyah-Patodi-Singer (APS) index theoremp. 478
12.9 Supersymmetric quantum mechanicsp. 481
12.9.1 Clifford algebra and fermionsp. 481
12.9.2 Supersymmetric quantum mechanics in flat spacep. 482
12.9.3 Supersymmetric quantum mechanics in a general manifoldp. 485
12.10 Supersymmetric proof of index theoremp. 487
12.10.1 The indexp. 487
12.10.2 Path integral and index theoremp. 490
Problemsp. 500
13 Anomalies in Gauge Field Theoriesp. 501
13.1 Introductionp. 501
13.2 Abelian anomaliesp. 503
13.2.1 Fujikawa's methodp. 503
13.3 Non-Abelian anomaliesp. 508
13.4 The Wess-Zumino consistency conditionsp. 512
13.4.1 The Becchi-Rouet-Stora operator and the Faddeev-Popov ghostp. 512
13.4.2 The BRS operator, FP ghost and moduli spacep. 513
13.4.3 The Wess-Zumino conditionsp. 515
13.4.4 Descent equations and solutions of WZ conditionsp. 515
13.5 Abelian anomalies versus non-Abelian anomaliesp. 518
13.5.1 m dimensions versus m + 2 dimensionsp. 520
13.6 The parity anomaly in odd-dimensional spacesp. 523
13.6.1 The parity anomalyp. 524
13.6.2 The dimensional ladder: 4-3-2p. 525
14 Bosonic String Theoryp. 528
14.1 Differential geometry on Riemann surfacesp. 528
14.1.1 Metric and complex structurep. 528
14.1.2 Vectors, forms and tensorsp. 529
14.1.3 Covariant derivativesp. 531
14.1.4 The Riemann-Roch theoremp. 533
14.2 Quantum theory of bosonic stringsp. 535
14.2.1 Vacuum amplitude of Polyakov stringsp. 535
14.2.2 Measures of integrationp. 538
14.2.3 Complex tensor calculus and string measurep. 550
14.2.4 Moduli spaces of Riemann surfacesp. 554
14.3 One-loop amplitudesp. 555
14.3.1 Moduli spaces, CKV, Beltrami and quadratic differentialsp. 555
14.3.2 The evaluation of determinantsp. 557
Referencesp. 560
Indexp. 565