Skip to:Content
|
Bottom
Cover image for LNG risk based safety : modeling and consequence analysis
Title:
LNG risk based safety : modeling and consequence analysis
Personal Author:
Publication Information:
[New York] : AIChE ; Hoboken, N.J. : Wiley, c2010.
Physical Description:
xvi, 374 p. : ill. ; 25 cm.
ISBN:
9780470317648
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010237373 TH9446 .I475 W66 2010 Open Access Book Book
Searching...

On Order

Summary

Summary

The expert, all-inclusive guide on LNG risk based safety

Liquefied Natural Gas (LNG) is the condensed form of natural gas achieved by cryogenic chilling. This process reduces gas to a liquid 600 times smaller in volume than it is in its original state, making it suitable for economical global transportation. LNG has been traded internationally and used with a good safety record since the 1960s. However, with some accidents occurring with the storage and liquefaction of LNG, a good understanding of its mechanisms, and its potential ramifications to facilities and to the nearby public, is becoming critically important. With an unbiased eye, this book leans on the expertise of its authors and LNG professionals worldwide to examine these serious safety issues, while addressing many false assumptions surrounding this volatile energy source.

LNG Risk Based Safety :

Summarizes the findings of the Governmental Accountability Office's (GAO) survey of nineteen LNG experts from across North America and Europe

Reviews the history of LNG technology developments

Systematically reviews the various consequences from LNG releases-- discharge, evaporation, dispersion, fire, and other impacts, and identifies best current approaches to model possible consequence zones

Includes discussion of case studies and LNG-related accidents over the past fifty years

Covering every aspect of this controversial topic, LNG Risk Based Safety informs the reader with firm conclusions based on highly credible investigation, and offers practical recommendations that researchers and developers can apply to reduce hazards and extend LNG technology.


Author Notes

John L. Woodward, PhD, is Senior Principal Consultant in the Process Safety Division of Baker Engineering and Risk Consultants, Inc. in San Antonio, Texas. He has been actively involved in consequence modeling for both the DNV PHAST and BakerRisk SafeSite codes for many years. He was invited by the GAO (Government Accountability Office) as part of a team of LNG experts to review LNG safety issues.
Robin M. Pitblado, PhD, is Director for SHE Risk Management for Det Norske Veritas and is based in Houston, Texas. He has been active in consequence modeling, risk assessment and major accident investigation for over thirty years and was also a member of the GAO Panel of LNG Experts.


Table of Contents

Prefacep. xv
1 LNG Properties and Overview of Hazardsp. 1
1.1 LNG Propertiesp. 2
1.2 Hazards of LNG with Respect to Public Riskp. 4
1.2.1 Flash Fire, Pool Fire, or Jet Firep. 7
1.2.2 Outdoor Vapor Cloud Explosionsp. 8
1.2.3 Enclosed Vapor Cloud Explosionsp. 9
1.2.4 Asphyxiationp. 9
1.2.5 Freeze Burnsp. 9
1.2.6 RPT Explosionsp. 10
1.2.7 Roll Overp. 10
1.3 Risk Analysis Requires Adequate Modelingp. 10
1.4 Flammabilityp. 11
1.5 Regulations in Siting Onshore LNG Import Terminalsp. 13
1.5.1 U.S. Marine LNG Risk and Security Regulationp. 13
1.5.2 U.S. Land-Based LNG Risk and Security Regulationp. 14
1.5.3 European and International Regulationsp. 15
1.6 Regulation for Siting Offshore LNG Import Terminalsp. 16
1.7 Controversial Claims of LNG Opponentsp. 16
2 LNG Incidents and Marine Historyp. 20
2.1 LNG Ship Design Historyp. 20
2.1.1 Initial Design Attemptsp. 21
2.1.2 Tank Materialsp. 21
2.1.3 Insulation Materialsp. 21
2.1.4 Tank Designp. 21
2.2 Design and Issues-First Commercial LNG Shipsp. 22
2.2.1 Membrane Technologyp. 23
2.2.2 Gaztransport Solutionp. 24
2.2.3 Spheresp. 25
2.2.4 LNG Carriers for the Asian Tradep. 26
2.2.5 Current State of LNG Tankersp. 27
2.3 LNG Trade Historyp. 27
2.3.1 European Tradep. 27
2.3.2 Asian Tradep. 28
2.3.3 Temporary Setbacksp. 28
2.3.4 Revival of LNG with Worldwide Supply-Demand Pinch of Petroleump. 28
2.3.5 Supply Historyp. 29
2.3.6 Some Economic Factorsp. 30
2.4 LNG Accident Historyp. 32
2.5 Summary of LNG History and Relevant Technical Developmentsp. 35
3 Current LNG Carriersp. 37
3.1 Design Requirementsp. 39
3.2 Membrane Tanksp. 39
3.2.1 Tank Design and Insulationp. 39
3.2.2 Dimensions and Capacityp. 41
3.2.3 Tank Materials and Insulationp. 42
3.2.4 Pressure and Vacuum Reliefp. 44
3.2.5 Design Issuesp. 44
3.3 Moss Spheresp. 46
3.3.1 Typical Dimensions and Capacityp. 47
3.3.2 Insulation and Tank Materialsp. 48
3.3.3 Pressure and Vacuum Reliefp. 48
3.3.4 Design Issuesp. 48
4 Risk Analysis and Risk Reductionp. 50
4.1 Backgroundp. 51
4.2 Risk Analysis Processp. 52
4.2.1 Hazard Identificationp. 54
4.3 Frequency: Data Sources and Analysisp. 57
4.3.1 Generic Data Approachp. 57
4.4 Frequency: Predictive Methodsp. 58
4.4.1 FTAp. 59
4.4.2 Event Tree Analysisp. 60
4.5 Consequence Modelingp. 64
4.6 Ignition Probabilityp. 64
4.7 Risk Resultsp. 68
4.7.1 Risk Presentationp. 68
4.7.2 Risk Decision Makingp. 70
4.8 Special Issues-Terrorismp. 70
4.9 Risk Reduction and Mitigation Measures for LNGp. 71
5 LNG Discharge on Waterp. 74
5.1 Type 1-Above Water Breaches at Seap. 76
5.1.1 Ship-to-Ship Collisionsp. 76
5.1.2 Weapons Attackp. 80
5.2 Type 2-At Waterline Breaches at Seap. 81
5.2.1 Grounding or Collisionp. 81
5.2.2 Explosive-Laden Boat Attackp. 81
5.3 Type 3-Below Waterline Breaches at Seap. 84
5.4 Discharges from Ship's Pipeworkp. 85
5.5 Cascading Failures at Seap. 86
5.5.1 Sloshing Forcesp. 86
5.5.2 Explosion in Hull Chambersp. 87
5.5.3 RPT in Hull Chambersp. 87
5.5.4 Cryogenic Temperature Stresses on Decks and Hullp. 87
5.5.5 Cascading Events Caused by Firep. 88
5.6 Initial Discharge Ratep. 88
5.7 Time-Dependent Discharge (Blowdown)p. 90
5.7.1 Blowdown for Type 2 Breach (at Waterline)p. 90
5.7.2 Blowdown for Type 1 Breach (above Waterline)p. 92
5.7.3 Blowdown of Type 3 Breach (Underwater Level)p. 94
5.8 Vacuum Breaking and Glug-Glug Effectsp. 103
6 Risk Analysis for Onshore Terminals and Transportp. 104
6.1 Typical Basis for LNG Receiving Terminalp. 104
6.2 Features of LNG Receiving Terminalsp. 105
6.3 Standards for Receiving Terminal Designp. 110
6.4 U.S. Guidelines and Regulations for Receiving Terminalsp. 112
6.4.1 LNG Transport Administered by the Department of Transportation (DOT) and the U.S. Coast Guardp. 113
6.4.2 LNG Terminal Permitting by Federal Energy Regulatory Commission (FERC)p. 113
6.4.3 Pool Fire Radiation Exclusion Zonep. 114
6.4.4 Vapor Dispersion Exclusion Zonep. 116
6.5 European Regulations for LNG Receiving Terminalsp. 119
6.5.1 Features of EN 1473p. 119
6.5.2 Comparison of Prescriptive and Risk-Based Approachesp. 120
6.6 Empirical Formula for Required Land Area of Terminalp. 121
6.7 Leak in Loading Arm or in Storage Tankp. 123
6.7.1 Modeling Effects of Substrate on Evaporation Ratep. 124
6.7.2 Vapor Hold-Up Effect on Dispersion Zone Calculationp. 126
6.8 Rolloverp. 129
6.9 LNG Land Transport Riskp. 132
6.10 Offshore LNG Terminalsp. 132
7 LNG Pool Modelingp. 134
7.1 Flashing and Droplet Evaporation in Jet Flowp. 135
7.2 Pool Spread and Evaporation Modelingp. 136
7.2.1 Spread Rate on Smooth Surfacep. 138
7.2.2 Pool Spread on Landp. 144
7.2.3 Pool Evaporation on Smooth Water Surface, Test Datap. 144
7.2.4 Pool Evaporation, Heat Transfer Regimesp. 145
7.2.5 Heat Conduction on Shallow Water with Ice Formationp. 150
7.2.6 Composition Changes with Evaporationp. 151
7.2.7 Type 1 Breach-LNG Penetration into Water, Turbulent Heat Transferp. 153
7.2.8 Time-Dependent Pool Spreadp. 156
7.3 Rapid Phase Transition Explosionsp. 159
7.3.1 Historical Experience with LNG RPTsp. 160
7.3.2 Similar Phenomena More Thoroughly Investigatedp. 161
7.3.3 Explosion Energy of an RPTp. 162
7.3.4 Models of RPT Explosionsp. 162
7.3.5 Superheat Limitsp. 165
7.3.6 TNT Equivalencep. 166
7.4 Aerosol Drop Sizep. 166
7.4.1 Drop Size Distributionp. 167
7.4.2 Droplet Breakup Mechanismsp. 168
7.5 Heat Balance Terms to LNG Poolp. 169
7.5.1 Heat Conduction from Solid Substratep. 169
7.5.2 Heat Convection from Windp. 170
7.5.3 Radiation to/from Poolp. 170
7.5.4 Evaporative Cooling on Waterp. 171
7.5.5 Bubble Flow in Vaporizing LNGp. 171
7.6 Nomenclaturep. 172
8 Vapor Cloud Dispersion Modelingp. 175
8.1 Atmospheric Transport Processesp. 175
8.1.1 Wind Speed, Stability, and Surface Roughnessp. 176
8.1.2 Effect of Obstructionsp. 181
8.2 Model Typesp. 181
8.2.1 Gaussian Modelsp. 182
8.2.2 Integral or Similarity Modelsp. 183
8.2.3 CFDp. 185
8.3 LNG Dispersion Test Seriesp. 188
8.4 Factors Affecting Plume Lengthp. 193
8.4.1 Heavy Gas Properties Increase Hazard Areap. 193
8.4.2 Models Predict Average Conditions of Fluctuating Plumep. 197
8.4.3 Wind Speed for Longest Plumep. 201
8.4.4 LNG Vapor Cloud Lift-Off Limits Hazardous Plume Lengthp. 202
8.4.5 Scooping of Confined Vaporsp. 202
8.5 Effect of Wind, Currents, and Waves on LNG Plumep. 204
8.6 Comparsion of Dispersion Model Predictionsp. 205
8.7 Descriptions of Dispersion Test Seriesp. 209
8.7.1 Matagorda Bay Testsp. 209
8.7.2 Shell Jettison Testsp. 209
8.7.3 Avocet, Burro, and Coyote Test Seriesp. 210
8.7.4 Maplin Sands Test Seriesp. 210
8.7.5 Falcon Test Seriesp. 211
8.8 Vapor Intrusion Indoorsp. 212
8.8.1 Basic Response for Indoor Concentration Buildupp. 212
8.8.2 Experimental Observations Show Low Indoor Concentrationsp. 214
8.8.3 Concentration Reduction by Plume Impinging on Buildingsp. 214
8.8.4 Models of Infiltration into Buildingsp. 215
8.9 Theoretical Basis for Suppression of Turbulencep. 220
9 LNG Pool Fire Modelingp. 222
9.1 Types of Fires from LNG Facilitiesp. 222
9.2 The Challenge for Pool Fire Modelingp. 223
9.3 Pool Fire Characteristicsp. 223
9.3.1 Fires Are Low-Momentum Phenomenap. 223
9.3.2 Fire Structurep. 225
9.3.3 Simplifying Pool Fire Structurep. 228
9.4 Summary of LNG Fire Experimentsp. 230
9.5 Burning Rate Data and Correlations From Fire Testsp. 230
9.5.1 Consistency Checks between Evaporation Rate and Burning Ratep. 236
9.5.2 Stopping Point for Pool Firep. 236
9.6 Point Source Fire Modelp. 237
9.7 Solid Flame Models: Flame Length Correlationsp. 239
9.7.1 Small-Scale Pool Fire Tests and Flame Length Correlationsp. 240
9.7.2 Medium-Scale Pool Fire Tests and Flame Length Correlationsp. 245
9.7.3 Large-Scale Pool Fire Tests and Flame Length Correlationsp. 248
9.8 Flame Tilt Correlationsp. 249
9.9 Flame Drag Near Poolsp. 252
9.10 Sep Correlations and Smoke Shieldingp. 253
9.10.1 SEP from Testsp. 253
9.10.2 Smoke Shielding and Theoretical SEP Valuesp. 254
9.10.3 Validation Comparison of a Three-Zone SEP Modelp. 259
9.11 Atmospheric Transmissivityp. 259
9.12 Trench Firesp. 262
9.13 View Factorsp. 264
9.14 CFD Modelingp. 266
9.15 Comparison of Model Predictionsp. 268
9.16 Fire Engulfment of LNG Carrierp. 271
10 Other LNG Hazardsp. 275
10.1 Fire and Explosion Scenariosp. 275
10.2 Jet Firesp. 276
10.3 Flash Firesp. 286
10.4 BLEVEs, Fireballsp. 291
10.4.1 BLEVEs and Applicability to LNGp. 292
10.4.2 Applicability of BLEVEs to LNG Marine Vesselsp. 294
10.4.3 Fireballs from Released Vaporp. 297
10.5 LNG Vapor Cloud Explosionsp. 302
10.5.1 Characteristics of Detonations and Deflagrationsp. 303
10.5.2 Fuel Reactivity Effectsp. 306
10.5.3 Modeling VCEsp. 308
10.5.4 CFD Modeling of VCEsp. 311
10.6 Asphyxiation and Cryogenic Hazard from LNG Spillsp. 313
11 Fire Effectsp. 318
11.1 Fire Radiation Effects on Individualsp. 318
11.1.1 Injuries to People-Definition of Burn Degreesp. 318
11.1.2 Measured Effect Levels from Radiation Exposurep. 319
11.1.3 Thresholds of Injury on Thermal Dose Basisp. 322
11.1.4 Radiation Dosage from Transient Eventsp. 324
11.2 Effects of Thermal Radiation on Propertyp. 324
11.2.1 Equipment Degradation by Thermal Radiationp. 324
11.2.2 Thermal Weakening of Steel and Concretep. 325
11.2.3 Bursting Pressure Vessels, Rail Tank Carsp. 327
12 Research Needsp. 329
12.1 Uncertaintiesp. 329
12.2 Recommendations of GAO Surveyp. 330
12.3 LNG Model Evaluation Protocols (MEPs)p. 333
12.4 Special Topicsp. 335
12.4.1 LNG Pool Spill and Fire Testsp. 335
12.4.2 Limitation of Boussinesq Approximationp. 337
12.4.3 LNG Plumes Not Modeled Well for Calm Windsp. 337
12.4.4 The Use of 1/2 LFL as an End Pointp. 338
12.5 Conclusionsp. 339
Referencesp. 341
Indexp. 369
Go to:Top of Page