Skip to:Content
|
Bottom
Cover image for Fixed and flapping wing aerodynamics for micro air vehicle applications
Title:
Fixed and flapping wing aerodynamics for micro air vehicle applications
Personal Author:
Series:
Progress in astronautics and aeronautics ; 195
Publication Information:
Reston, Va : American Institute of Aeronautics and Astronautics, 2001
ISBN:
9781563475177

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004999086 TL507 F59 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

Recently, there has been a serious effort to design aircraft that are as small as possible for special, limited-duration missions. These vehicles may carry visual, acoustic, chemical, or biological sensors for such missions as traffic management, hostage situation surveillance, rescue operations, etc. The goal is to develop aircraft systems that weigh less than 90 grams, with a 15-centimetre wingspan. Since it is not possible to meet all of the design requirements of a micro air vehicle with current technology, research is proceeding. This new book reports on the latest research in the area of aerodynamic efficiency of various fixed-wing, flapping wing, and rotary wing concepts. It presents the progress made by over 50 active researchers in the field from Canada, Europe, Japan, and the United States. It is the only book of its kind.


Table of Contents

Thomas J. Mueller and James D. DeLaurierMark DrelaPeter J. Kunz and Ilan KrooJ. T. Monttinen and R. R. Shortridge and B. S. Latek and H. L. Reed and W. S. SaricE. V. LaitoneT. M. Grundy and G. P. Keefe and M. V. LowsonGabriel E. Torres and Thomas J. MuellerMichael S. Selig and Ashok Gopalarathnam and Philippe Giguere and Christopher A. LyonTh. Lutz and W. Wurz and S. WagnerAndy P. Broeren and Michael B. BraggJeremy M. V. RaynerC. P. Ellington and J. R. UsherwoodKenneth C. Hall and Steven R. HallHao Liu and Keiji KawachiRichard Ames and Oliver Wong and Narayanan KomerathK. D. Jones and T. C. Lund and M. F. PlatzerAkira Azuma and Masato Okamoto and Kunio YasudaRambod F. Larijani and James D. DeLaurierM. F. Neef and D. HummelRudolf BannaschKenneth D. Frampton and Michael Goldfarb and Dan Monopoli and Dragan CveticaninOthon K. Rediniotis and Dimitris C. LagoudasIlan Kroo and Peter KunzJoel M. Grasmeyer and Matthew T. KeennonRavi Ramamurti and William SandbergGeoffrey L. Barrows and Craig Neely and Kurt T. Miller
Prefacep. xv
Chapter 1 An Overview of Micro Air Vehicle Aerodynamicsp. 1
I. Introductionp. 2
II. Fixed Wing Vehiclesp. 4
III. Flapping Wing Vehiclesp. 6
IV. Concluding Remarksp. 8
Referencesp. 9
Part I. Fixed Wing Aerodynamics
Chapter 2 Higher-Order Boundary Layer Formulation and Application to Low Reynolds Number Flowsp. 13
I. Introductionp. 14
II. Curvilinear Coordinates and Equationsp. 15
III. Equivalent Inviscid Flowp. 16
IV. Entrainment Equation and Viscous/Inviscid Couplingp. 17
V. Integral Momentum and Kinetic Energy Equationsp. 17
VI. Turbulent Transport Equationp. 18
VII. Real Viscous Flow Profilesp. 19
VIII. Profile Familiesp. 21
IX. Higher-Order Correctionsp. 22
X. High-Order Panel Methodp. 24
XI. Viscous/Inviscid System Formulationp. 29
XII. Resultsp. 30
XIII. Conclusionsp. 33
Referencesp. 33
Chapter 3 Analysis and Design of Airfoils for Use at Ultra-Low Reynolds Numbersp. 35
I. Introductionp. 35
II. Computational Analysis Methodsp. 36
III. Flowfield Assumptionsp. 38
IV. Grid Topologyp. 39
V. Comparison with Experimentp. 40
VI. Effects of Reynolds Number and Geometry Variations on Airfoil Performancep. 41
VII. Airfoil Optimizationp. 56
VIII. Conclusionsp. 59
Referencesp. 59
Chapter 4 Adaptive, Unstructured Meshes for Solving the Navier-Stokes Equations for Low-Chord-Reynolds-Number Flowsp. 61
I. Introductionp. 62
II. Approachp. 63
III. The Finite Element Approximationp. 66
IV. Fluid Solverp. 67
V. Grid Generation and Adaptive Refinementp. 70
VI. Resultsp. 73
VII. Database Validationp. 76
VIII. Ongoing Workp. 76
IX. Conclusionsp. 79
Acknowledgmentp. 80
Referencesp. 80
Chapter 5 Wind Tunnel Tests of Wings and Rings at Low Reynolds Numbersp. 83
I. Introductionp. 83
II. Effect of Aspect Ratio and Planform on the Aerodynamic Lift and Dragp. 84
III. Effect of Low Reynolds Numbers on the Lift and Drag of Ring Airfoilsp. 86
Referencesp. 90
Chapter 6 Effects of Acoustic Disturbances on Low Re Aerofoil Flowsp. 91
I. Introductionp. 91
II. Experimental Arrangementsp. 94
III. Resultsp. 98
IV. Discussionp. 106
V. Potential Use of Sound to Improve Performancep. 110
VI. Conclusionsp. 111
Acknowledgmentsp. 112
Referencesp. 112
Chapter 7 Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Numbersp. 115
I. Introductionp. 116
II. Apparatusp. 117
III. Proceduresp. 119
IV. Uncertaintyp. 120
V. Flow Visualizationp. 120
VI. Discussion of Resultsp. 121
VII. Vortex-Lattice Methodp. 137
VIII. Conclusionsp. 139
Acknowledgmentsp. 139
Referencesp. 140
Chapter 8 Systematic Airfoil Design Studies at Low Reynolds Numbersp. 143
I. Introductionp. 143
II. Design Processp. 144
III. Parametric Studies in Airfoil Designp. 147
IV. Summary and Conclusionsp. 164
Acknowledgmentsp. 166
Referencesp. 166
Chapter 9 Numerical Optimization and Wind-Tunnel Testing of Low Reynolds Number Airfoilsp. 169
I. Introductionp. 170
II. Aerodynamic Modelp. 171
III. Experimental Setupp. 172
IV. Numerical Optimization of Low Reynolds Number Airfoilsp. 176
V. Experimental Investigations on Very Low Reynolds Number Airfoilsp. 182
VI. Conclusion and Outlookp. 188
Referencesp. 188
Chapter 10 Unsteady Stalling Characteristics of Thin Airfoils at Low Reynolds Numberp. 191
I. Introductionp. 191
II. Experimental Methodsp. 193
III. Results and Discussionp. 196
IV. Summary and Conclusionsp. 211
Acknowledgmentsp. 212
Referencesp. 212
Part II. Flapping and Rotary Wing Aerodynamics
Chapter 11 Thrust and Drag in Flying Birds: Applications to Birdlike Micro Air Vehiclesp. 217
I. Introductionp. 217
II. Avian Flight Performancep. 219
III. Thrust Generationp. 222
IV. Drag Reductionp. 224
V. Wing Shapep. 226
VI. Conclusionsp. 227
Acknowledgmentsp. 228
Referencesp. 228
Chapter 12 Lift and Drag Characteristics of Rotary and Flapping Wingsp. 231
I. Introductionp. 232
II. Aerodynamics of Hovering Insect Flightp. 232
III. Propeller Experiments at High Rep. 237
IV. Results and Discussionp. 241
Acknowledgmentsp. 246
Referencesp. 246
Chapter 13 A Rational Engineering Analysis of the Efficiency of Flapping Flightp. 249
I. Introductionp. 250
II. The Influence of Wake Roll Up on Flapping Flightp. 253
III. Minimum Loss Flapping Theoryp. 258
IV. Resultsp. 264
V. Summary and Discussionp. 271
Acknowledgmentsp. 272
Referencesp. 272
Chapter 14 Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Numberp. 275
I. Introductionp. 276
II. Computational Modeling of a Rotary Wingp. 277
III. Numerical Accuracyp. 279
IV. Resultsp. 279
V. Conclusionsp. 284
Acknowledgmentp. 285
Referencesp. 285
Chapter 15 On the Flowfield and Forces Generated by a Flapping Rectangular Wing at Low Reynolds Numberp. 287
I. Introductionp. 287
II. Previous Workp. 288
III. Scope of Present Workp. 290
IV. Experimental Setupp. 290
V. Wing Motionp. 291
VI. Velocity Data Planesp. 291
VII. Velocity Field Data Analysisp. 293
VIII. Force Measurementsp. 294
IX. Results and Discussionp. 295
X. Conclusionsp. 303
Referencesp. 303
Chapter 16 Experimental and Computational Investigation of Flapping Wing Propulsion for Micro Air Vehiclesp. 307
I. Introductionp. 308
II. General Kinematicsp. 308
III. Plunging Airfoilsp. 311
IV. Pitching Airfoilsp. 318
V. Pitching and Plunging Airfoilsp. 320
VI. Airfoil Combinationsp. 324
VII. Summary and Prospectivep. 336
Acknowledgmentsp. 336
Referencesp. 336
Chapter 17 Aerodynamic Characteristics of Wings at Low Reynolds Numberp. 341
I. Introductionp. 343
II. Unsteady Wing Theoryp. 343
III. Experimental Aerodynamicsp. 354
IV. Geometrical Consideration of Blade Element Theoryp. 363
V. Forces and Moments Acting on Beating Wingsp. 374
VI. Conclusionp. 385
Referencesp. 391
Chapter 18 A Nonlinear Aeroelastic Model for the Study of Flapping Wing Flightp. 399
I. Introductionp. 401
II. Structural Analysisp. 405
III. Aerodynamic and Inertial Forces and Momentsp. 407
IV. Dampingp. 415
V. Results and Discussionp. 419
VI. Conclusionsp. 427
Referencesp. 428
Chapter 19 Euler Solutions for a Finite-Span Flapping Wingp. 429
I. Introductionp. 430
II. Numerical Methodp. 432
III. Investigations for Two-Dimensional Flowp. 433
IV. Investigations for Three-Dimensional Flowp. 441
V. Conclusionsp. 449
Acknowledgmentsp. 449
Referencesp. 449
Chapter 20 From Soaring and Flapping Bird Flight to Innovative Wing and Propeller Constructionsp. 453
I. Introductionp. 453
II. Bionic Airfoil Constructionp. 454
III. Bionic Propellerp. 465
IV. Conclusionsp. 469
Acknowledgmentsp. 470
Referencesp. 470
Chapter 21 Passive Aeroelastic Tailoring for Optimal Flapping Wingsp. 473
I. Introductionp. 473
II. Experimental Setupp. 475
III. Resultsp. 477
IV. Conclusionsp. 481
Acknowledgmentsp. 482
Referencesp. 482
Chapter 22 Shape Memory Alloy Actuators as Locomotor Musclesp. 483
I. Introductionp. 484
II. Brief Overview of SMA Actuatorsp. 486
III. Thermomechanical Transformation Fatigue of SMA Actuatorsp. 488
IV. Adaptive Control of SMA Actuator Wiresp. 491
V. Energy Considerations for SMA Actuatorsp. 494
VI. SMA Actuators as Locomotor Muscles for a Biomimetic Hydrofoilp. 496
VII. Conclusionsp. 498
Acknowledgmentsp. 498
Referencesp. 498
Part III. Micro Air Vehicle Applications
Chapter 23 Mesoscale Flight and Miniature Rotorcraft Developmentp. 503
I. Introductionp. 503
II. Approachp. 508
III. Testingp. 515
IV. Conclusionsp. 516
Acknowledgmentsp. 516
Referencesp. 517
Chapter 24 Development of the Black Widow Micro Air Vehiclep. 519
I. Introductionp. 519
II. Early Prototypesp. 519
III. Multidisciplinary Design Optimizationp. 520
IV. Energy Storagep. 524
V. Motorsp. 525
VI. Micropropeller Designp. 526
VII. Airframe Structural Designp. 528
VIII. Avionicsp. 530
IX. Video Camera Payloadp. 531
X. Stability and Controlp. 532
XI. Performancep. 532
XII. Ground Control Unitp. 533
XIII. Conclusionsp. 533
Acknowledgmentsp. 535
Referencesp. 535
Chapter 25 Computation of Aerodynamic Characteristics of a Micro Air Vehiclep. 537
I. Introductionp. 538
II. The Incompressible Flow Solverp. 538
III. Description of the Micro Air Vehicle Modelp. 539
IV. Discussion of Resultsp. 540
V. Summary and Conclusionsp. 554
Acknowledgmentsp. 554
Referencesp. 554
Chapter 26 Optic Flow Sensors for MAV Navigationp. 557
I. Introductionp. 557
II. Optic Flowp. 557
III. Description of the Optic Flow Sensorp. 560
IV. Use of Optic Flow for Navigationp. 566
V. Initial In-Flight Experimentsp. 567
VI. Next-Generation Sensorsp. 571
VII. Conclusionp. 573
Acknowledgmentsp. 573
Referencesp. 573
Series Listingp. 575
Go to:Top of Page