Cover image for Flight mechanics modeling and analysis
Title:
Flight mechanics modeling and analysis
Publication Information:
Boca Raton : CRC Press, 2009
Physical Description:
xx, 416 p. : ill. ; 24 cm.
ISBN:
9781420067538
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010175506 TL589.4 R36 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

The design, development, analysis, and evaluation of new aircraft technologies such as fly by wire, unmanned aerial vehicles, and micro air vehicles, necessitate a better understanding of flight mechanics on the part of the aircraft-systems analyst. A text that provides unified coverage of aircraft flight mechanics and systems concept will go a long way to making analysis of these new technologies quicker and easier.


Table of Contents

Prefacep. xv
Acknowledgmentsp. xvii
Authorsp. xix
Chapter 1 Introductionp. 1
1.1 ANNs in Controlp. 4
1.2 FL/S in Controlp. 5
1.3 Evaluation of Aircraft Control-Pilot Interactionsp. 6
1.4 Chapter Highlightsp. 7
Referencesp. 9
Chapter 2 Mathematical Model Buildingp. 11
2.1 Introductionp. 11
2.2 Mathematical Model Structuresp. 15
2.2.1 TF Modelsp. 16
2.2.1.1 Continuous-Time Modelp. 17
2.2.1.2 Discrete-Time Modelp. 22
2.2.1.3 Delta Form TFp. 23
2.2.2 State-Space Modelsp. 26
2.2.2.1 State-Space Representationsp. 28
2.2.2.2 General Modelp. 33
2.2.3 Time-Series Modelsp. 34
2.3 Models for Noise/Error Processesp. 37
2.3.1 Continuous-Time/Discrete-Time White/Correlated Noise Processesp. 37
2.4 ANN Modelingp. 38
2.4.1 Feed Forward Neural Networksp. 42
2.4.2 A Training Algorithm for FFNNp. 42
2.4.3 Recurrent Neural Networksp. 44
2.5 FL-Based Modelingp. 45
2.5.1 Additive Fuzzy Systemp. 46
Epiloguep. 50
Exercisesp. 50
Referencesp. 51
Chapter 3 Equations of Motionp. 53
3.1 Introductionp. 53
3.2 Rigid Body EOMp. 54
3.3 Resolution of Inertial Forces and Momentsp. 60
3.4 Resolution of Aerodynamics, Gravity Forces, and Thrust Forcesp. 62
3.5 Complete Sets of EOMp. 67
3.5.1 Rectangular Formp. 68
3.5.2 Polar Formp. 69
3.6 Missile Dynamic Equationsp. 71
3.7 Rotorcraft Dynamicsp. 72
3.7.1 Momentum Theoryp. 74
3.7.2 Blade-Element Theoryp. 76
3.7.3 Rotorcraft Modeling Formulationsp. 76
3.7.4 Limitations of Rigid Body Modelp. 78
Epiloguep. 79
Exercisesp. 79
Referencesp. 80
Chapter 4 Aerodynamic Derivatives and Modelingp. 83
4.1 Introductionp. 83
4.2 Basic Aerodynamic Forces and Momentsp. 84
4.3 Aerodynamic Parametersp. 86
4.3.1 Definition of Aerodynamic Derivativesp. 87
4.3.2 Longitudinal Derivativesp. 90
4.3.3 Lateral-Directional Derivativesp. 100
4.3.4 Compound Lateral-Directional Derivativesp. 106
4.4 Missile Aerodynamic Derivativesp. 107
4.4.1 Longitudinal Derivativesp. 109
4.4.2 Lateral-Directional Derivativesp. 109
4.4.2.1 Roll Derivativesp. 109
4.4.2.2 Yaw Derivativesp. 110
4.5 Rotorcraft Aerodynamic Derivativesp. 111
4.6 Role of Derivatives in Aircraft Design Cycle and Flight Control Law Developmentp. 113
4.7 Aircraft Aerodynamic Modelsp. 116
Epiloguep. 118
Exercisesp. 118
Referencesp. 119
Chapter 5 Simplification of Equations of Motion and Transfer-Function Analysisp. 121
5.1 Introductionp. 121
5.2 Strategies for Simplificationp. 122
5.2.1 Choice of Coordinate Systemsp. 122
5.2.2 Linearization of Model Equationsp. 123
5.2.3 Simplification Using Measured Datap. 124
5.3 Longitudinal Models and Modesp. 125
5.3.1 Short Period Modep. 128
5.3.2 Phugoidp. 133
5.4 Lateral-Directional Models and Modesp. 136
5.4.1 DR Modep. 137
5.4.2 Spiral Modep. 139
5.4.3 Roll Modep. 140
5.5 Missile Aerodynamic Transfer Functionsp. 142
5.6 Rotorcraft Linear Modelingp. 145
5.6.1 Rotor Plus Body Modelsp. 146
5.6.2 Stability Derivative Modelsp. 147
5.6.3 Rotor-Response Decomposition Modelsp. 148
5.6.4 Evaluation/Validation of Linear Flight Dynamics Modelsp. 149
5.7 UAV Dynamicsp. 150
5.8 MAV Dynamicsp. 151
5.9 Lighter-than-Air Vehicle/BLIMP Dynamicsp. 153
Epiloguep. 154
Exercisesp. 155
Referencesp. 156
Chapter 6 Simulation of Flight Dynamicsp. 159
6.1 Introductionp. 159
6.2 Aircraft Subsystems Data/Modelsp. 163
6.2.1 Aero Databasep. 164
6.2.2 Mass, Inertia, and Center of Gravity Characteristicsp. 164
6.2.3 Instrumentation Systemp. 165
6.2.4 Inertial Navigation Systemp. 165
6.2.5 Flight Management Systemp. 165
6.2.6 Actuator Modelsp. 166
6.2.7 Engine Modelp. 167
6.2.8 Landing Gearp. 168
6.2.9 Control Loading and Sound Simulationp. 168
6.2.10 Motion Cuesp. 169
6.2.11 Turbulence and Gust Modelsp. 170
6.2.12 Sensor Modelingp. 170
6.2.13 Flight Dynamicsp. 171
6.3 Steady-State Flight and Trim Conditionsp. 171
6.3.1 Rate of Climb and Turn Coordination Flightsp. 174
6.3.2 Computation of Linear Models for Control Law Designp. 176
6.4 Six DOF Simulation and Validationp. 178
6.4.1 Flight Simulation Model Validation for a Rotorcraftp. 180
6.4.2 Flight Simulation Model Validation Using the Concept of Coefficient Matchingp. 181
6.4.3 Flight Simulation Model Validation Using Direct Updatep. 183
6.5 PC MATLAB/SIMULINK-Based Simulationp. 184
Epiloguep. 188
Exercisesp. 189
Referencesp. 190
Chapter 7 Flight Test Maneuvers and Database Managementp. 193
7.1 Introductionp. 193
7.2 Planning of Flight Test Maneuversp. 194
7.2.1 Flight Test Evaluation of a Transport Aircraftp. 196
7.2.2 Takeoff and Landing Tasksp. 196
7.2.2.1 Approach and Landing Taskp. 196
7.2.2.2 Takeoff Taskp. 197
7.2.3 Other Maneuversp. 198
7.3 Specific Flight Test Data Generation and Analysis Aspectsp. 198
7.3.1 Longitudinal Axis Data Generationp. 199
7.3.2 LD Data Generationp. 201
7.4 Quality of Flight Test Maneuversp. 201
7.5 Input Signals for Exciting Maneuversp. 202
7.5.1 Design Consideration for Input Signalsp. 202
7.5.2 Specific Input Typesp. 204
7.6 Specific Maneuvers for Aerodynamic Modelingp. 204
7.6.1 Small Amplitude Maneuversp. 204
7.6.1.1 Longitudinal Short-Period Maneuverp. 205
7.6.1.2 Phugoid Maneuverp. 205
7.6.1.3 Thrust Input Maneuverp. 205
7.6.1.4 Flaps Input Maneuverp. 205
7.6.1.5 LD Maneuversp. 206
7.6.1.6 Aileron Input Roll Maneuverp. 207
7.6.1.7 Rudder Input Maneuverp. 208
7.6.1.8 DR Maneuverp. 208
7.6.1.9 Steady Heading Sideslip Maneuverp. 208
7.6.2 Large Amplitude Maneuversp. 208
7.7 Specific Dynamic Maneuvers for Determination of Drag Polarsp. 211
7.7.1 Roller Coaster (Pullup/Pushover) Maneuverp. 213
7.7.2 SD Maneuverp. 213
7.7.3 Acceleration and Deceleration Maneuverp. 213
7.7.4 WUT Maneuverp. 214
7.8 Specific Maneuvers for Rotorcraftp. 217
7.9 Flight Test Database Managementp. 219
7.9.1 Basic Requirementsp. 220
7.9.2 Selection and Classification of Flight Datap. 220
7.9.2.1 Classification Based on Type of Maneuversp. 220
7.9.2.2 Classification Based on Flight Conditionsp. 221
7.9.2.3 Classification Based on Aircraft Configurationp. 221
7.9.3 Data Storage and Organizationp. 221
7.9.4 Flight Test Database in Oraclep. 221
7.9.5 Brief Description of a Typical Programp. 225
7.9.5.1 Transactionsp. 225
7.9.5.2 Graphs/Reportsp. 225
7.9.5.3 User Maintenancep. 226
Epiloguep. 226
Exercisesp. 226
Referencesp. 228
Chapter 8 Reconfiguration and Fuzzy Control Analysisp. 229
8.1 Introductionp. 229
8.2 Requirements of Flight Controlp. 229
8.3 Stability/Control Augmentation Strategiesp. 233
8.4 Performance Requirements and Criteriap. 236
8.5 Procedure for the Design and Evaluation of Control Lawsp. 236
8.6 Fuzzy Logic Controlp. 238
8.7 Fault Detection, Identification, and Isolationp. 246
8.7.1 Models for Faultsp. 246
8.8 Aircraft Reconfigurable/Restructurable Control Systemp. 247
8.8.1 Sensor Fault Detection Schemep. 250
8.8.2 Actuator Fault Detection Schemep. 253
8.8.2.1 Reconfiguration Conceptp. 254
8.8.3 Non-Model-Based Approachp. 256
Epiloguep. 258
Exercisesp. 259
Referencesp. 260
Chapter 9 System Identification and Parameter Estimationp. 263
9.1 Introductionp. 263
9.2 System Identificationp. 266
9.2.1 Time-Series/Regression Model Identificationp. 266
9.2.2 Comparison of Several Model Order Criteriap. 268
9.2.3 Transfer Function Models from Real-Flight Datap. 271
9.2.4 Expert Systems for System Identificationp. 272
9.3 Aircraft Parameter Estimationp. 272
9.3.1 Maneuvers, Measurements, and Mathematical Modelsp. 273
9.3.2 Parameter-Estimation Methodsp. 274
9.3.2.1 Equation Error Methodp. 274
9.3.2.2 Maximum Likelihood/OEMp. 275
9.3.2.3 Filtering Methodsp. 279
9.3.2.4 Parameter-Estimation Approaches for Inherently Unstable/Augmented Aircraftp. 282
9.4 Determination of Stability and Control Derivatives from Flight Data-Case Studiesp. 283
9.4.1 Fighter Aircraft FA1p. 284
9.4.2 Fighter Aircraft FA2p. 285
9.4.3 Basic and Modified Transport Aircraftp. 285
9.4.4 Trainer Aircraftp. 287
9.4.5 Light Canard Research Aircraftp. 288
9.4.6 Helicopterp. 288
9.4.7 AGARD Standard Modelp. 290
9.4.8 Dynamic Wind-Tunnel Experimentsp. 290
9.4.9 Iron Bird Resultsp. 291
9.5 Approaches for Determination of Drag Polars from Flight Datap. 292
9.5.1 Model-Based Approach for Determination of Drag Polarp. 293
9.5.2 Non-Model-Based Approach for Drag Polar Determinationp. 293
9.6 Analysis of Large Amplitude Maneuver Datap. 294
9.7 Global Nonlinear Analytical Modelingp. 296
9.8 ANN-Based Parameter Estimationp. 298
9.8.1 FFNN Schemep. 299
9.8.2 RNN for Parameter Estimationp. 300
9.9 Fuzzy Logic-Based Methods for Estimationp. 303
9.9.1 ANFIS for Parameter Estimationp. 303
9.9.2 Fuzzy Kalman Filter for State Estimationp. 305
9.9.2.1 Tracking of Maneuvering Targetp. 309
9.10 Derivative-Free Kalman Filter for State Estimationp. 311
Epiloguep. 317
Exercisesp. 317
Referencesp. 319
Chapter 10 Handling Qualities Analysisp. 323
10.1 Introductionp. 323
10.2 Pilot Opinion Ratingp. 323
10.3 Human Operator Modelingp. 324
10.3.1 Motion Plus Visual and Only Visual Cue Experimentsp. 325
10.4 Handling Qualities Criteriap. 328
10.4.1 Longitudinal HQ Criteriap. 329
10.4.1.1 Lower-Order Equivalent TFp. 329
10.4.1.2 Control Anticipation Parameterp. 329
10.4.1.3 Bandwidth Criterionp. 331
10.4.1.4 Neal-Smith Criterionp. 331
10.4.1.5 Closed Loop Criterionp. 332
10.4.1.6 Pitch Rate Responsep. 332
10.4.1.7 C* Criterionp. 332
10.4.1.8 Gibson's Criteriap. 333
10.4.2 Lateral-Directional HQ Criteriap. 334
10.4.2.1 Lower-Order Equivalent TFp. 334
10.4.2.2 Roll Angle-Sideslip Mode Ratiop. 334
10.4.2.3 LD Modesp. 334
10.4.2.4 Roll Rate and Bank Angle Oscillationsp. 335
10.4.2.5 Roll Performancep. 336
10.4.2.6 Sideslip Excursionsp. 337
10.5 Evaluation of HQ Criteriap. 337
10.5.1 HQ for Large Transport Aircraftp. 337
10.5.2 Rotorcraft Handling Qualitiesp. 338
10.5.3 Handling Qualities Analysis Toolp. 340
10.5.3.1 Hover and Low-Speed Requirements (HLSR)-Pitch Axis Response Criteriap. 341
10.5.3.2 HLSR-Roll Axis Response Criteriap. 341
10.5.3.3 HLSR-Yaw Axis Response Criteriap. 343
10.5.3.4 HLSR-Heave Axis Response Criteriap. 343
10.6 HQ Aspects for Unmanned Aerial Vehiclesp. 343
10.7 Pilot-Aircraft Interactionsp. 345
10.7.1 Longitudinal PIO Criteriap. 345
10.7.1.1 Ralph-Smith Criterionp. 346
10.7.1.2 Smith-Geddes Criterionp. 346
10.7.1.3 Phase Rate Criterionp. 346
10.7.1.4 Loop Separation Parameterp. 347
10.7.1.5 Neal-Smith Time-Domain Criterionp. 347
10.7.1.6 Bandwidth PIO Criterionp. 347
10.7.2 Lateral PIO Criteriap. 347
10.7.2.1 Ralph-Smithp. 348
10.7.2.2 Phase Ratep. 348
10.8 Model Order Reduction for Evaluations of HQp. 348
Epiloguep. 349
Exercisesp. 349
Referencesp. 350
Appendix A Aerodynamics and Related Conceptsp. 353
Appendix B Statistics and Probabilityp. 383
Appendix C Signal and Systems Conceptsp. 391
Bibliographyp. 407
Indexp. 409