Cover image for Autonomous software-defined radio receivers for deep space applications
Title:
Autonomous software-defined radio receivers for deep space applications
Series:
Deep-space communications and navigation series
Publication Information:
Hoboken, NJ : Wiley-Interscience, 2006
ISBN:
9780470082126

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010127054 TL3035 A97 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This book introduces the reader to the concept of an autonomous software-defined radio (SDR) receiver. Each distinct aspect of the design of the receiver is treated in a separate chapter written by one or more leading innovators in the field. Chapters begin with a problem statement and then offer a full mathematical derivation of an appropriate solution, a decision metric or loop-structure as appropriate, and performance results.


Author Notes

JON HAMKINS , PhD, is the Technical Supervisor of the Jet Propulsion Laboratory's Information Processing Group. Dr. Hamkins, a Senior Member of the IEEE, has been awarded several NASA Tech Briefs for his innovations in signal processing, coding theory, and optical communications.

MARVIN K. SIMON , PhD, is a Senior Research Engineer at the Jet Propulsion Laboratory. His research in modulation, coding, and synchronization has been instrumental in the design of many of NASA's deep space and near earth missions, for which he has been awarded dozens of patents and awards. This is Dr. Simon's twelfth book.


Table of Contents

Jon Hamkins and Marvin K. SimonEdgar Satorius and Tom Jedrey and David Bell and Ann Devereaux and Todd Ely and Edwin Grigorian and Igor Kuperman and Alan LeeMarvin K. Simon and Jon HamkinsDariush DivsalarMarvin K. Simon and Dariush DivsalarMarvin K. Simon and Samuel DolinarAndre Tkacenko and Marvin K. SimonMarvin K. Simon and Jon HamkinsJon Hamkins and Marvin K. SimonMarvin K. SimonJon Hamkins and Hooman Shirani-Mehr
Forewordp. xiii
Prefacep. xv
Acknowledgmentsp. xvii
Contributorsp. xix
Chapter 1 Introduction and Overviewp. 1
1.1 Preliminariesp. 3
1.1.1 Signal Modelp. 3
1.1.2 Anatomy of the Received Signalp. 5
1.2 Radio Receiver Architecturesp. 8
1.2.1 A Conventional Radio Receiverp. 8
1.2.2 Electrap. 10
1.2.3 An Autonomous Radiop. 10
1.3 Estimators and Classifiers of the Autonomous Radiop. 12
1.3.1 Carrier Phase Trackingp. 12
1.3.2 Modulation Classificationp. 13
1.3.3 Signal-to-Noise Ratio Estimationp. 13
1.3.4 Frequency Trackingp. 14
1.4 An Iterative Message-Passing Architecturep. 14
1.4.1 Messages from the Symbol-Timing Estimatorp. 15
1.4.2 Messages from the Phase Trackerp. 15
1.4.3 Messages from the Modulation Classificationp. 15
1.4.4 Messages from the Decoderp. 15
1.5 A Demonstration Testbedp. 16
Referencesp. 16
Chapter 2 The Electra Radiop. 19
2.1 Electra Receiver Front-End Processingp. 20
2.1.1 AGCp. 22
2.1.2 ADCp. 24
2.1.3 Digital Downconversion and Decimationp. 25
2.2 Electra Demodulationp. 25
2.2.1 Frequency-Acquisition and Carrier-Tracking Loopp. 27
2.2.2 Navigation: Doppler Phase Measurementp. 30
2.2.3 Symbol-Timing Recoveryp. 30
2.2.4 Viterbi Node Sync and Symbol SNR Estimationp. 33
2.3 Electra Digital Modulatorp. 39
Referencesp. 42
Chapter 3 Modulation Index Estimationp. 45
3.1 Coherent Estimationp. 46
3.1.1 BPSKp. 46
3.1.2 M-PSKp. 50
3.2 Noncoherent Estimationp. 54
3.3 Estimation in the Absence of Knowledge of the Modulation, Data Rate, Symbol Timing, and SNRp. 56
3.4 Noncoherent Estimation in the Absence of Carrier Frequency Knowledgep. 61
Chapter 4 Frequency Correctionp. 63
4.1 Frequency Correction for Residual Carrierp. 63
4.1.1 Channel Modelp. 64
4.1.2 Optimum Frequency Estimation over an AWGN Channelp. 64
4.1.3 Optimum Frequency Estimation over a Raleigh Fading Channelp. 65
4.1.4 Open-Loop Frequency Estimationp. 66
4.1.5 Closed-Loop Frequency Estimationp. 67
4.2 Frequency Correction for Known Data-Modulated Signalsp. 72
4.2.1 Channel Modelp. 72
4.2.2 Open-Loop Frequency Estimationp. 74
4.2.3 Closed-Loop Frequency Estimationp. 74
4.3 Frequency Correction for Modulated Signals with Unknown Datap. 78
4.3.1 Open-Loop Frequency Estimationp. 79
4.3.2 Closed-Loop Frequency Estimationp. 80
Referencesp. 83
Chapter 5 Data Format and Pulse Shape Classificationp. 85
5.1 Coherent Classifiers of Data Format for BPSKp. 86
5.1.1 Maximum-Likelihood Coherent Classifier of Data Format for BPSKp. 86
5.1.2 Reduced-Complexity Data Format BPSK Classifiersp. 88
5.1.3 Probability of Misclassification for Coherent BPSKp. 89
5.2 Coherent Classifiers of Data Format for QPSKp. 94
5.2.1 Maximum-Likelihood Coherent Classifier of Data Format for QPSKp. 94
5.2.2 Reduced-Complexity Data Format QPSK Classifiersp. 96
5.2.3 Probability of Misclassification for Coherent QPSKp. 97
5.3 Noncoherent Classification of Data Format for BPSKp. 98
5.3.1 Maximum-Likelihood Noncoherent Classifier of Data Format for BPSKp. 98
5.3.2 Probability of Misclassification for Noncoherent BPSKp. 105
5.4 Maximum-Likelihood Noncoherent Classifier of Data Format for QPSKp. 108
5.5 Maximum-Likelihood Coherent Classifier of Data Format for BPSK with Residual and Suppressed Carriersp. 109
5.6 Maximum-Likelihood Noncoherent Classifier of Data Format for BPSK with Residual and Suppressed Carriersp. 113
5.7 Maximum-Likelihood Pulse Shape Classificationp. 117
Referencesp. 119
Chapter 6 Signal-to-Noise Ratio Estimationp. 121
6.1 Signal Model and Formation of the Estimatorp. 123
6.1.1 Sampled Versionp. 123
6.1.2 I&D Versionp. 126
6.2 Methods of Phase Compensationp. 129
6.3 Evaluation of h[superscript plusminus]p. 131
6.4 Mean and Variance of the SNR Estimatorp. 132
6.4.1 Exact Moment Evaluationsp. 132
6.4.2 Asymptotic Moment Evaluationsp. 136
6.5 SNR Estimation in the Presence of Symbol Timing Errorp. 145
6.5.1 Signal Model and Formation of the Estimatorp. 146
6.5.2 Mean and Variance of the SNR Estimatorp. 149
6.6 A Generalization of the SSME Offering Improved Performancep. 150
6.7 A Method for Improving the Robustness of the Generalized SSMEp. 156
6.8 Special Case of the SSME for BPSK-Modulated Datap. 158
6.9 Comparison with the Cramer-Rao Lower Bound on the Variance of SNR Estimatorsp. 161
6.10 Improvement in the Presence of Frequency Uncertaintyp. 165
6.11 The Impact of the Oversampling Factor on the Performance of the Modified SSME in the Presence of Symbol Timing Errorp. 171
6.12 Other Modulationsp. 175
6.12.1 Offset QPSKp. 175
6.12.2 QAMp. 179
6.13 The Time-Multiplexed SSMEp. 180
6.13.1 An Adaptive SSMEp. 184
Referencesp. 188
Appendix 6-A Derivation of Asymptotic Mean and Variance of SSMEp. 190
Chapter 7 Data Rate Estimationp. 193
7.1 Data Rate Estimation Based on the Mean of the SSME SNR Estimatorp. 194
7.1.1 Signal Model and Assumptionsp. 194
7.1.2 Relation of the SSME SNR Estimator to Data Rate Estimationp. 196
7.1.3 SSME Data Rate Estimation Algorithmp. 200
7.1.4 GLRT-Type SSME Data Rate Estimation Algorithmp. 201
7.2 Effects of Symbol-Timing Error on Estimating the Data Ratep. 201
7.2.1 Accounting for the Symbol-Timing Errorp. 202
7.3 Quantization of the Symbol-Timing Errorp. 204
7.3.1 All-Digital Implementation of the SSME-Based Data Rate Estimatorp. 205
7.3.2 SSME Data Rate/SNR/Symbol-Timing Error Estimation Algorithmp. 208
7.3.3 GLRT-Type SSME Data Rate/SNR/Symbol-Timing Error Estimation Algorithmp. 209
7.4 Simulation Results for the SSME-Based Estimation Algorithmsp. 209
7.4.1 Performance Metrics Used for Evaluating the Estimation Algorithmsp. 210
7.4.2 Behavior of the SSME-Based Data Rate Estimation Algorithms as a Function of SNRp. 213
7.4.3 Behavior of the SSME-Based Data Rate Estimation Algorithms as a Function of Symbol-Timing Errorp. 220
Referencesp. 226
Chapter 8 Carrier Synchronizationp. 227
8.1 Suppressed versus Residual Carrier Synchronizationp. 229
8.2 Hybrid Carrier Synchronizationp. 230
8.3 Active versus Passive Arm Filtersp. 233
8.4 Carrier Synchronization of Arbitrary Modulationsp. 247
8.4.1 MPSKp. 247
8.4.2 QAM and Unbalanced QPSKp. 259
8.4.3 [pi]/4 Differentially Encoded QPSKp. 264
Referencesp. 264
Appendix 8-A Cramer-Rao Bound on the Variance of the Error in Estimating the Carrier Phase of a BPSK Signalp. 266
Chapter 9 Modulation Classificationp. 271
9.1 Preliminariesp. 272
9.1.1 Signal Modelp. 272
9.1.2 Conditional-Likelihood Functionp. 273
9.2 Modulation Classifiersp. 274
9.2.1 ML Classifiersp. 274
9.2.2 Suboptimum Classifiersp. 276
9.3 Threshold Optimizationp. 278
9.3.1 Suboptimality of Previously Derived Thresholdsp. 278
9.3.2 Empirical Threshold Optimizationp. 279
9.4 Complexityp. 281
9.4.1 ML Classifierp. 281
9.4.2 Coarse Integral Approximate ML Classifierp. 282
9.4.3 qGLRT Classifierp. 282
9.4.4 qLLR and nqLLRp. 282
9.5 Classification Error Floorp. 283
9.6 Numerical Resultsp. 284
9.7 Unknown Symbol Timingp. 289
9.8 BPSK/[pi]/4-QPSK Classificationp. 292
9.8.1 ML Noncoherent Classifier Averaging over Data, then Carrier Phasep. 292
9.8.2 ML Noncoherent Classifier Averaging over Carrier Phase, then Datap. 293
9.8.3 Suboptimum Classifiersp. 294
9.9 Noncoherent Classification of Offset Quadrature Modulationsp. 295
9.9.1 Channel Model and Conditional-Likelihood Functionp. 296
9.9.2 Classification of OQPSK versus BPSKp. 299
9.9.3 Suboptimum (Simpler to Implement) Classifiersp. 301
9.9.4 Classification of MSK versus QPSKp. 306
9.10 Modulation Classification in the Presence of Residual Carrier Frequency Offsetp. 308
Referencesp. 309
Appendix 9-A Parameter Estimation for the GLRTp. 311
Appendix 9-B ML Estimation of Carrier Phase for [pi]/4-QPSK Modulationp. 315
Chapter 10 Symbol Synchronizationp. 321
10.1 MAP-Motivated Closed-Loop Symbol Synchronizationp. 323
10.2 The DTTL as an Implementation of the MAP Estimation Loop for Binary NRZ Signals at High SNRp. 325
10.3 Conventional versus Linear Data Transition Tracking Loopp. 328
10.3.1 The Loop S-Curvep. 331
10.3.2 Noise Performancep. 333
10.3.3 Mean-Squared Timing-Error Performancep. 335
10.4 Simplified MAP-Motivated Closed-Loop Symbol Synchronizers for M-PSKp. 338
10.5 MAP Sliding-Window Estimation of Symbol Timingp. 339
10.5.1 A Brief Discussion of Performance and Its Bounds for Open- and Closed-Loop Symbol-Timing Techniquesp. 341
10.5.2 Formulation of the Sliding-Window Estimatorp. 343
10.5.3 Extension to Other Pulse Shapesp. 346
10.6 Symbol Synchronization in the Absence of Carrier Phase Informationp. 347
10.6.1 Suboptimum Schemesp. 347
10.6.2 The Noncoherent DTTLp. 359
10.7 The Impact of Carrier Frequency Offset on Performancep. 377
10.7.1 S-Curve Performancep. 381
10.7.2 Noise Performancep. 384
10.7.3 Mean-Squared Timing-Error Performancep. 384
10.7.4 A Final Notep. 385
10.8 Coarse Estimation of Symbol Timing for Use in SNR Estimationp. 386
Referencesp. 389
Chapter 11 Implementation and Interaction of Estimators and Classifiersp. 391
11.1 Signal Modelp. 392
11.2 Interaction of Estimator and Classifiersp. 393
11.3 Coarse and Fine Estimators/Classifiersp. 395
11.3.1 Modulation Index Estimationp. 395
11.3.2 Frequency Correctionp. 397
11.3.3 Joint Estimation of Data Rate, Data Format, SNR, and Coarse Symbol Timingp. 398
11.3.4 Modulation Classificationp. 400
11.3.5 Carrier Synchronizationp. 403
11.3.6 Symbol Synchronizationp. 406
Referencep. 408
Acronyms and Abbreviationsp. 411
Indexp. 417