Cover image for Optimal and robust estimation : with an introduction to stochastic control theory
Title:
Optimal and robust estimation : with an introduction to stochastic control theory
Personal Author:
Series:
Automation and control engineering ; 26
Edition:
2nd ed.
Publication Information:
Boca Raton, FL : CRC Press, 2008
ISBN:
9780849390081

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010164241 QA402.3 L48 2008 Open Access Book Book
Searching...
Searching...
30000010209893 QA402.3 L48 2008 Open Access Book Book
Searching...
Searching...
30000010088569 QA402.3 L48 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems.

A Classic Revisited
Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems.

Modern Tools for Tomorrow's Engineers
This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLABĀ® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications.

This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.


Table of Contents

Prefacep. xv
Authorsp. xvii
Subjectp. xix
Audiencep. xxi
I Optimal Estimationp. 1
1 Classical Estimation Theoryp. 3
1.1 Mean-Square Estimationp. 3
1.1.1 Mean-Square Estimation of a Random Variable X by a Constantp. 4
1.1.2 Mean-Square Estimation of a Random Variable X Given a Random Variable Z: General Casep. 5
1.1.3 The Orthogonality Principlep. 13
1.1.4 Linear Mean-Square Estimation of a Random Variable X Given a Random Variable Zp. 14
1.2 Maximum-Likelihood Estimationp. 19
1.2.1 Nonlinear Maximum-Likelihood Estimationp. 19
1.2.2 Linear Gaussian Measurementsp. 20
1.3 The Cramer-Rao Boundp. 25
1.4 Recursive Estimationp. 28
1.4.1 Sequential Processing of Measurementsp. 28
1.4.2 Sequential Maximum-Likelihood Estimationp. 31
1.4.3 Prewhitening of Datap. 33
1.5 Wiener Filteringp. 34
1.5.1 The Linear Estimation Problemp. 36
1.5.2 Solution of the Wiener-Hopf Equationp. 38
1.5.2.1 Infinite-Delay Steady-State Smoothingp. 38
1.5.2.2 Causal Steady-State Filteringp. 41
Problemsp. 50
2 Discrete-Time Kalman Filterp. 59
2.1 Deterministic State Observerp. 59
2.2 Linear Stochastic Systemsp. 64
2.2.1 Propagation of Means and Covariancesp. 65
2.2.2 Statistical Steady-State and Spectral Densitiesp. 68
2.3 The Discrete-Time Kalman Filterp. 70
2.3.1 Kalman Filter Formulationsp. 71
2.4 Discrete Measurements of Continuous-Time Systemsp. 84
2.4.1 Discretization of Continuous Stochastic Systemsp. 85
2.4.2 Multiple Sampling Ratesp. 98
2.4.3 Discretization of Time-Varying Systemsp. 101
2.5 Error Dynamics and Statistical Steady Statep. 101
2.5.1 The Error Systemp. 101
2.5.2 The Innovations Sequencep. 102
2.5.3 The Algebraic Riccati Equationp. 103
2.5.4 Time-Varying Plantp. 110
2.6 Frequency Domain Resultsp. 112
2.6.1 A Spectral Factorization Resultp. 112
2.6.2 The Innovations Representationp. 114
2.6.3 Chang-Letov Design Procedure for the Kalman Filterp. 115
2.6.4 Deriving the Discrete Wiener Filterp. 118
2.7 Correlated Noise and Shaping Filtersp. 123
2.7.1 Colored Process Noisep. 124
2.7.2 Correlated Measurement and Process Noisep. 127
2.7.3 Colored Measurement Noisep. 130
2.8 Optimal Smoothingp. 132
2.8.1 The Information Filterp. 133
2.8.2 Optimal Smoothed Estimatep. 136
2.8.3 Rauch-Tung-Striebel Smootherp. 138
Problemsp. 140
3 Continuous-Time Kalman Filterp. 151
3.1 Derivation from Discrete Kalman Filterp. 151
3.2 Some Examplesp. 157
3.3 Derivation from Wiener-Hope Equationp. 166
3.3.1 Introduction of a Shaping Filterp. 167
3.3.2 A Differential Equation for the Optimal Impulse Responsep. 168
3.3.3 A Differential Equation for the Estimatep. 169
3.3.4 A Differential Equation for the Error Covariancep. 170
3.3.5 Discussionp. 172
3.4 Error Dynamics and Statistical Steady Statep. 177
3.4.1 The Error Systemp. 177
3.4.2 The Innovations Sequencep. 178
3.4.3 The Algebraic Riccati Equationp. 179
3.4.4 Time-Varying Plantp. 180
3.5 Frequency Domain Resultsp. 180
3.5.1 Spectral Densities for Linear Stochastic Systemsp. 181
3.5.2 A Spectral Factorization Resultp. 181
3.5.3 Chang-Letov Design Procedurep. 184
3.6 Correlated Noise and Shaping Filtersp. 188
3.6.1 Colored Process Noisep. 188
3.6.2 Correlated Measurement and Process Noisep. 189
3.6.3 Colored Measurement Noisep. 190
3.7 Discrete Measurements of Continuous-Time Systemsp. 193
3.8 Optimal Smoothingp. 197
3.8.1 The Information Filterp. 200
3.8.2 Optimal Smoothed Estimatep. 201
3.8.3 Rauch-Ting-Striebel Smootherp. 203
Problemsp. 204
4 Kalman Filter Design and Implementationp. 213
4.1 Modeling Errors, Divergence, and Exponential Data Weightingp. 213
4.1.1 Modeling Errorsp. 213
4.1.2 Kalman Filter Divergencep. 223
4.1.3 Fictitious Process Noise Injectionp. 226
4.1.4 Exponential Data Weightingp. 230
4.2 Reduced-Order Filters and Decouplingp. 236
4.2.1 Decoupling and Parallel Processingp. 236
4.2.2 Reduced-Order Filtersp. 242
4.3 Using Suboptimal Gainsp. 249
4.4 Scalar Measurement Updatingp. 253
Problemsp. 254
5 Estimation for Nonlinear Systemsp. 259
5.1 Update of the Hyperstatep. 259
5.1.1 Discrete Systemsp. 259
5.1.2 Continuous Systemsp. 263
5.2 General Update of Mean and Covariancep. 265
5.2.1 Time Updatep. 266
5.2.2 Measurement Updatep. 268
5.2.3 Linear Measurement Updatep. 269
5.3 Extended Kalman Filterp. 271
5.3.1 Approximate Time Updatep. 271
5.3.2 Approximate Measurement Updatep. 272
5.3.3 The Extended Kalman Filterp. 273
5.4 Application to Adaptive Samplingp. 283
5.4.1 Mobile Robot Localization in Samplingp. 284
5.4.2 The Combined Adaptive Sampling Problemp. 284
5.4.3 Closed-Form Estimation for a Linear Field without Localization Uncertaintyp. 286
5.4.4 Closed-Form Estimation for a Linear Field with Localization Uncertaintyp. 290
5.4.5 Adaptive Sampling Using the Extended Kalman Filterp. 295
5.4.6 Simultaneous Localization and Sampling Using a Mobile Robotp. 297
Problemsp. 305
II Robust Estimationp. 313
6 Robust Kalman Filterp. 315
6.1 Systems with Modeling Uncertaintiesp. 315
6.2 Robust Finite Horizon Kalman a Priori Filterp. 317
6.3 Robust Stationary Kalman a Priori Filterp. 321
6.4 Convergence Analysisp. 326
6.4.1 Feasibility and Convergence Analysisp. 326
6.4.2 [epsilon]-Switching Strategyp. 329
6.5 Linear Matrix Inequality Approachp. 331
6.5.1 Robust Filter for Systems with Norm-Bounded Uncertaintyp. 332
6.5.2 Robust Filtering for Systems with Polytopic Uncertaintyp. 335
6.6 Robust Kalman Filtering for Continuous-Time Systemsp. 341
Proofs of Theoremsp. 343
Problemsp. 350
7 H[infinity] Filtering of Continuous-Time Systemsp. 353
7.1 H[infinity] Filtering Problemp. 353
7.1.1 Relationship with Two-Person Zero-Sum Gamep. 356
7.2 Finite Horizon H[infinity] Linear Filterp. 357
7.3 Characterization of All Finite Horizon H[infinity] Linear Filtersp. 361
7.4 Stationary H[infinity] Filter-Riccati Equation Approachp. 365
7.4.1 Relationship between Guaranteed H[infinity] Norm and Actual H[infinity] Normp. 371
7.4.2 Characterization of All Linear Time-Invariant H[infinity] Filtersp. 373
7.5 Relationship with the Kalman Filterp. 373
7.6 Convergence Analysisp. 374
7.7 H[infinity] Filtering for a Special Class of Signal Modelsp. 378
7.8 Stationary H[infinity] Filter-Linear Matrix Inequality Approachp. 382
Problemsp. 383
8 H[infinity] Filtering of Discrete-Time Systemsp. 387
8.1 Discrete-Time H[infinity] Filtering Problemp. 387
8.2 H[infinity] a Priori Filterp. 390
8.2.1 Finite Horizon Casep. 391
8.2.2 Stationary Casep. 397
8.3 H[infinity] a Posteriori Filterp. 400
8.3.1 Finite Horizon Casep. 400
8.3.2 Stationary Casep. 405
8.4 Polynomial Approach to H[infinity] Estimationp. 408
8.5 J-Spectral Factorizationp. 410
8.6 Applications in Channel Equalizationp. 414
Problemsp. 419
III Optimal Stochastic Controlp. 421
9 Stochastic Control for State Variable Systemsp. 423
9.1 Dynamic Programming Approachp. 423
9.1.1 Discrete-Time Systemsp. 424
9.1.2 Continuous-Time Systemsp. 435
9.2 Continuous-Time Linear Quadratic Gaussian Problemp. 443
9.2.1 Complete State Informationp. 445
9.2.2 Incomplete State Information and the Separation Principlep. 449
9.3 Discrete-Time Linear Quadratic Gaussian Problemp. 453
9.3.1 Complete State Informationp. 454
9.3.2 Incomplete State Informationp. 455
Problemsp. 457
10 Stochastic Control for Polynomial Systemsp. 463
10.1 Polynomial Representation of Stochastic Systemsp. 463
10.2 Optimal Predictionp. 465
10.3 Minimum Variance Controlp. 469
10.4 Polynomial Linear Quadratic Gaussian Regulatorp. 473
Problemsp. 481
Appendix Review of Matrix Algebrap. 485
A.1 Basic Definitions and Factsp. 485
A.2 Partitioned Matricesp. 486
A.3 Quadratic Forms and Definitenessp. 488
A.4 Matrix Calculusp. 490
Referencesp. 493
Indexp. 501