Cover image for Chassis design : principles and analysis
Title:
Chassis design : principles and analysis
Personal Author:
Publication Information:
Warrendale, PA : Society of Automotive Engineers, 2002
ISBN:
9780768008265

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010126128 TL255 M54 2002 Open Access Book Book
Searching...
Searching...
30000010126127 TL255 M54 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Chassis Design: Principles and Analysis is based on Olley's technical writings, and is the first complete presentation of his life and work. This new book provides insight into the development of chassis technology and its practical application by a master. Many examples are worked out in the text and the analytical developments are grounded by Olley's years of design experience. Well-illustrated with over 400 figures and tables, as well as numerous appendices.


Table of Contents

Forewordp. vii
Authors' Prefacep. ix
Origins and Objectivesp. xi
Acknowledgementsp. xv
List of Platesp. xxv
List of Figuresp. xxvii
List of Tablesp. xxxv
1. Maurice Olley-His Life and Timesp. 1
1.1. Reminiscencesp. 1
1.2. Chronology-Maurice Olleyp. 28
1.3. Holyhead Roadp. 37
1.4. Olley's Associatesp. 42
1.5. Introduction to the Monographsp. 42
1.6. Suspension (General Discussion)p. 46
2. Tires and Steady-State Cornering-Slip Angle Effects (Primary)p. 49
2.1. Introductionp. 49
Part A Simplified Tire Modelsp. 51
2.2. Tiresp. 51
Effect of Slip Angle on Lateral Forcep. 58
Mathematical Representation of Lateral Force vs. Slip Anglep. 59
Further Study of Parabolap. 66
Notes on the Olley Tire Modelp. 69
Note on Wheel and Tirep. 71
Part B Bicycle Model Examplesp. 74
2.3. Steady-State Turns (General Discussion)p. 74
Introductionp. 74
Steady-State Turnsp. 74
Camber Steer-In a Parallel Independent Front Suspension (IFS)p. 77
Roll Steerp. 77
Changes in Steer Angle at the Front Wheelsp. 78
2.4. Calculating Steady-State Steering Characteristics (Bicycle Model)p. 83
Introductionp. 83
Measuring Steering Characteristicsp. 83
Examplesp. 84
Conventional Constant Radius/Variable Speed Skid Pad Testp. 88
The "Infinite Skid Pad" (Testing at Constant Speed)p. 89
Fixed Steering Anglep. 92
Part C Four-Wheel Model Examplesp. 93
2.5. Lateral Weight Transfer Effect (Wheel Pair)p. 93
Introductionp. 93
Distribution of the Roll Moment (about the Ground)p. 94
Roll Moment Effectsp. 95
Roll Moment Effects-Analysis Based on the Layout of Figure 2.30 and Notation of Figure 2.29p. 97
2.6. Calculating Steady-State Steering Characteristics with Lateral Load Transfer Distribution (LLTD)p. 101
Introductionp. 101
Tiresp. 102
Summary of Steady-State Equationsp. 102
Some Variationsp. 108
Tire Lateral Forcesp. 112
2.7. Traction Effectsp. 116
Introductionp. 116
Rolling Resistancep. 120
Combined Longitudinal and Lateral Tire Forcep. 121
Power Requiredp. 127
2.8. Neutral Steer Point and Static Marginp. 127
Introductionp. 127
Neutral Steer Pointp. 128
2.9. Swing Axlep. 135
Introductionp. 135
Approximate Figuring of Swing Axlep. 136
Roll Momentsp. 136
Swing Axlep. 145
"De-Stabilizing" the Swing Axlep. 153
2.10. Summary of Steady-State Steering (Primary Effects)p. 157
2.11. Summary of Calculations in Sections 2.4 through 2.9p. 162
Section 2.4p. 162
Section 2.5p. 162
Section 2.6p. 164
Section 2.7p. 164
Section 2.8p. 165
Section 2.9p. 165
3. Steady-State Cornering-Steer Effects (Secondary)p. 167
3.1. Introductionp. 167
Note on Understeer/Oversteer as Measured in Skid Pad Testsp. 168
3.2. Roll Effectsp. 169
Inclined Roll Axisp. 172
3.3. Wheel Control (Rear Axle)p. 173
Rear Axlep. 173
Hotchkiss Rear Axlep. 175
Torque Tube Rear Axle (and Panhard Rod)p. 177
Four-Link Rear Axlep. 178
Three-Link and Panhard Rodp. 179
Offset Torque Armp. 181
Swing Axle Geometryp. 182
3.4. Wheel Control (Front Suspensions and Steering)p. 185
Roll Steer of Front Wheelsp. 185
Front Axlep. 185
Forward Steeringp. 187
Geometry in Rollp. 187
Leaf Spring Geometryp. 188
Front Axle Center Pointp. 189
Independent Front Suspensionp. 190
Wishbone Suspensionp. 190
Rear Steering Linkagep. 191
Forward Steering Linkagep. 193
3.5. Understeer and Oversteer Effects, Front and Rearp. 194
3.6. Torque Steerp. 195
3.7. Lateral Deflection Steerp. 196
Flexibility of Steering Linkagep. 198
Timing of Lateral Deflection Steerp. 198
Rear-Steer Effectsp. 199
3.8. Straight Runningp. 200
3.9. Suspension Geometry Effectsp. 202
Toe-In and Camberp. 202
Camber-Change Variations (Wishbone Suspension)p. 203
Casterp. 209
Kingpin Anglep. 209
Wheelfightp. 211
3.10. Effect of Road Surfacep. 211
3.11. Wind Handlingp. 212
Introductionp. 212
Yaw Damping Due to the Tiresp. 213
Path of Carp. 215
Factors Affecting Wind Handlingp. 218
3.12. Summaryp. 220
4. Transient Corneringp. 223
4.1. Introductionp. 223
4.2. Checkerboard Test (Stonex)p. 224
4.3. Qualitative Transient Description (Schilling)p. 232
Turn without Roll-No Understeer or Oversteerp. 233
Turn with Rollp. 237
4.4. Linear Analysisp. 241
4.5. CAL Results (Segel)p. 242
4.6. Turn Entry Transient (Olley)p. 244
4.7. Moment of Inertia and Wheelbasep. 247
Introductionp. 247
Estimated k[superscript 2]/ab in Plan Viewp. 252
4.8. Steering when Moving Forwardp. 253
Time Responsep. 253
Response Plots for a Modern Carp. 255
Steering when Moving Forward, Steady Statep. 256
4.9. Steering when Moving in Reversep. 259
Comments on Steering in Forward and Reversep. 262
Time Response in Reversep. 262
4.10. Boat Steering and Truck in Reversep. 263
Boat Steeringp. 263
Truck in Reversep. 265
4.11. Note on Ackermann l/R Approximationp. 266
4.12. Summaryp. 267
5. Ridep. 269
5.1. Introductionp. 269
5.2. Dry Frictionp. 272
5.3. Fluid Dampingp. 273
5.4. Steel Springs: Work Storage Analysisp. 277
5.5. Work Stored in Springsp. 281
Round Wire Helical Spring in Compression, or Torsion Rodp. 284
5.6. Toggles and Self-Levelingp. 285
5.7. Two Degrees of Freedomp. 288
5.8. The Rowell and Guest Treatmentp. 289
Spring Center Op. 290
CG of Sprung Massp. 291
Pitch Stabilityp. 291
Oscillation Centersp. 297
5.9. Actual Ride Frequenciesp. 301
5.10. Height of Oscillation Centers and Sprung CGp. 301
5.11. Additional Material on the Two-Degree-of-Freedom Ride Modelp. 303
5.12. Unsprung Weightp. 314
5.13. Independent Suspensionp. 315
5.14. Multiple Suspensionp. 317
5.15. Summaryp. 318
6. Oscillations of the Unsprungp. 321
6.1. Introductionp. 321
6.2. Shimmy Dynamics and Its Curesp. 322
Center-Point Steeringp. 328
Kingpin in the Wheel Planep. 328
Drag-Link Springsp. 328
Shimmy Shacklep. 329
Compensated Tie Rodsp. 329
Independent Suspension Mechanismsp. 331
6.3. Wheelfightp. 335
Introductionp. 336
Steering Gear Resonancep. 338
Wheelfight Curesp. 340
Effect on Wheelfight (Schilling, "Handling Factors," 1938)p. 340
6.4. Caster Wobble (Olley)p. 347
Case Study-Chevrolet with Dubonnet IFSp. 347
Road Speedp. 349
Road Surfacep. 349
Engine Mountp. 349
Summary-Caster Wobblep. 349
6.5. Wheel Hopp. 351
Introductionp. 351
Damping of the Sprung and Unsprung Massesp. 351
Harmonic Wheel Hop Absorbersp. 354
Frequency of Wheel Hopp. 357
Shock Absorbersp. 357
6.6. Fore and Aft Forcesp. 359
6.7. Washboard Roadsp. 361
6.8. Brake Hopp. 364
6.9. Reverse Power Hopp. 367
Note on Reverse Power Hop (Offset Torque Arm)p. 369
6.10. Axle Trampp. 370
"Sculling Action"p. 371
6.11. Crane-Simplex Linkagep. 374
6.12. Damping of a Swing Axlep. 375
6.13. Note on Raised Roll Center without Swing Axlep. 381
6.14. Handling Factors (Report by Robert Schilling, GMPG, 1938)p. 381
Waddle and Side Chuckp. 381
Wheelhouse Clearancep. 384
Tire Scrubp. 384
Scrub Dampingp. 384
Rear Axle Side Shakep. 385
Camber Change or Swing Arm Actionp. 390
Roll Camberingp. 390
6.15. Summaryp. 390
7. Suspension Linkagesp. 395
7.1. Introductionp. 395
7.2. Front Suspension with No Offsets (First Approximation)p. 400
Camber Changep. 403
7.3. Steering Linkage (without Anti-Dive)p. 406
7.4. Effect of Anti-Dive on Steering Linkage Layoutp. 408
7.5. Wheel Motions with Arm-Planes at an Angle to the Transverse Planep. 411
7.6. Greater Accuracy (Allowance for Offsets)p. 412
Camber (Inclination) Change ([gamma])p. 414
Tread Change (One Wheel)p. 416
7.7. Comparison Example-Front Suspension without and with Offsetsp. 417
7.8. Link Suspension Rear Axlep. 420
7.9. Rear Axle Linkage with Offsetsp. 423
7.10. Ride Rates and Wheel Ratesp. 426
7.11. Camber Thrustp. 434
7.12. Toe-In-Swing Axle with Diagonal Pivotp. 436
7.13. Wheel Rates-Wishbone Suspensionp. 436
7.14. Tread [Track] Change Radiusp. 444
7.15. Effect of Camber Change on Wheel Ratep. 445
7.16. Vertical Rate of Arm and Torsion Springp. 445
7.17. Position of Springsp. 447
7.18. Summaryp. 448
8. Roll, Roll Moments and Skew Ratesp. 451
8.1. Introductionp. 451
8.2. The Roll Axisp. 451
Axlep. 452
Independent without Tread [Track] Changep. 455
Independent with Tread Changep. 457
Swing Axlep. 458
8.3. Intermediate Designs of Independent Suspensionp. 459
8.4. De Dion Axlesp. 460
8.5. Skew Rates [Warp]p. 462
8.6. Longitudinal Interconnection-Compensated Suspensionp. 463
Total Roll Rate for Compensated Suspensionp. 464
Skew Ratep. 465
8.7. Roll Stabilityp. 466
Scale Effectsp. 467
Roll Stabilizerp. 467
8.8. Roll Axis Measurementp. 469
8.9. Summaryp. 470
9. Fore and Aft Forcesp. 473
9.1. Introductionp. 473
9.2. Maximum Tractionp. 473
Front Drivep. 479
Gradesp. 480
9.3. Brake Distributionp. 481
9.4. Brake Divep. 485
9.5. Anti-Dive Geometryp. 487
9.6. Power Squatp. 495
9.7. Mercedes Single-Joint Swing Armp. 496
9.8. Vehicles with Axles Controlled by Leaf Springsp. 499
Wind-Up of Unsymmetrical Springp. 502
Note on Wind-Up Stiffness of Leaf Springsp. 506
9.9. Inclination of Leaf Springsp. 515
9.10. Anti-Dive Front Wishbone Suspensionp. 518
9.11. Sudden Brake Applicationp. 521
9.12. Summaryp. 525
10. Leaf Springs-Combined Suspension Spring and Linkagep. 529
10.1. Introductionp. 529
10.2. Circular Bendingp. 532
10.3. Parallel Cantileverp. 533
10.4. Theoretical Single Leafp. 534
10.5. Figuring a Leaf Springp. 535
10.6. Cantilever Springp. 536
10.7. Equal Leaves and Equal Spacingp. 537
10.8. Combined Spring Rate (with "Unbalanced" Springs)p. 539
10.9. Effective Torque Armp. 540
10.10. Roll Ratesp. 540
10.11. Shackle Effects-Symmetrical and Unsymmetrical Springsp. 542
With Symmetrical Leaf Springsp. 542
Shackle Effects, Unsymmetrical Springsp. 545
10.12. Spring Testingp. 546
10.13. Summaryp. 547
Appendix A Slip Angle Sign Conventionsp. 549
A.1 Introductionp. 549
A.2 SAE Sign Conventionp. 550
A.3 Olley's Sign Conventionp. 551
A.4 Summaryp. 553
Appendix B Fiala/Radt Nondimensional Tire Representationp. 555
B.1 Introductionp. 555
B.2 Derivationp. 555
B.3 Advantages of Tire Nondimensionalizationp. 558
Appendix C Technical Papers by Olley-Summaries and Reviewsp. 559
Appendix D Olley Correspondencep. 567
Appendix E Balloon Tires and Front Wheel Suspensionp. 595
Appendix F Sense of Directionp. 601
Appendix G Development of the Flat Ridep. 611
Indexp. 621
About the Authorsp. 639