Cover image for Automotive gasoline direct-injection engines
Title:
Automotive gasoline direct-injection engines
Personal Author:
Publication Information:
Warrendale, Pa. : Society of Automotive Engineers, 2002
ISBN:
9780768008821

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010039865 TL214.F78 Z49 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

This book covers the latest global technical initiatives in the rapidly progressing area of gasoline direct injection (GDI), spark-ignited gasoline engines and examines the contribution of each process and sub-system to the efficiency of the overall system.Including discussions, data, and figures from many technical papers and proceedings that are not available in the English language, Automotive Gasoline Direct Injection Systems will prove to be an invaluable desk reference for any GDI subject or direct-injection subsystem that is being developed worldwide.


Table of Contents

Forewordp. xi
Prefacep. xiii
Acknowledgementsp. xvii
Nomenclaturep. xix
Chapter 1 Introductionp. 1
1.1 Overviewp. 1
1.2 Gasoline Direct Injection versus Port Fuel Injectionp. 2
1.3 Classification of Gasoline Direct-Injection Enginesp. 7
1.4 Summaryp. 7
Chapter 2 Combustion System Configurationsp. 11
2.1 Introductionp. 11
2.2 Relative Position of Fuel Injector and Spark Plugp. 12
2.3 Approaches to Achieving a Stratified Chargep. 15
2.3.1 Spray-Guided Combustion Systemsp. 16
2.3.2 Wall-Guided Combustion Systemsp. 19
2.3.3 Air-Guided Combustion Systemsp. 26
2.4 Summaryp. 27
Chapter 3 Fuel Injection Systemp. 29
3.1 Introductionp. 29
3.2 Fuel System Requirementsp. 29
3.3 Fuel Injector Requirements and Considerationsp. 31
3.4 Fuel Pressure Requirementsp. 33
3.5 Fuel Injector Classificationp. 35
3.5.1 Inwardly Opening, Single-Fluid Swirl Injectorp. 36
3.5.2 Shaped-Spray Injectorp. 37
3.5.3 Slit-Type Nozzlep. 38
3.5.4 Multihole Nozzlep. 38
3.5.5 Outwardly Opening, Single-Fluid Swirl Injectorp. 40
3.5.6 Piezoelectrically Actuated Injectorp. 41
3.5.7 Pulse-Pressurized, Air-Assisted (PPAA) Injectorp. 41
3.6 G-DI Injector Actuation and Dynamicsp. 44
3.7 Requirements Regarding Multiple Injectionsp. 47
3.8 Summaryp. 47
Chapter 4 Fuel Spray Characteristicsp. 51
4.1 Introductionp. 51
4.2 Spray Atomization Requirementsp. 52
4.3 Fuel Spray Classificationp. 56
4.4 Sac Spray Considerationsp. 60
4.5 After-Injection Dynamics and Atomizationp. 63
4.6 Fuel Spray Penetration and Cone Angle Considerationsp. 65
4.7 Characteristics of Offset Spraysp. 72
4.8 Split Injection Considerationsp. 73
4.9 Spray Characteristics of Single-Fluid Swirl Injectorsp. 75
4.9.1 Swirl Nozzle Flow Dynamics and Effects of Design Parametersp. 75
4.9.2 Effect of Fuel Swirl Ratio on Spray Characteristicsp. 79
4.9.3 Spray Characteristics of Inwardly Opening, Single-Fluid Swirl Injectorp. 81
4.9.4 Spray Characteristics of Outwardly Opening, Single-Fluid Swirl Injectorp. 84
4.9.5 Spray Characteristics of Shaped-Spray Injectorp. 84
4.10 Spray Characteristics of Single-Fluid, Non-Swirl Injectorsp. 88
4.10.1 Spray Characteristics of Slit-Type Nozzlep. 88
4.10.2 Spray Characteristics of Multihole Nozzlep. 88
4.10.3 Spray Characteristics During Cold Crank and Startp. 91
4.11 Characteristics of Pulse-Pressurized, Air-Assisted Spraysp. 92
4.12 Ambient Density Effect on Spray Developmentp. 95
4.13 Injector Operating Temperature and Fuel Volatility Effects on Spray Developmentp. 97
4.13.1 Injector Operating Temperature Effect on Spray Development of Swirl-Type Injectorp. 98
4.13.2 Combined Effects of Injector Operating Temperature and Ambient Back Pressure on Spray Development of Non-Swirl Injectorsp. 100
4.14 Spray Atomization Ranges for Design and Operating Variablesp. 105
4.15 Current Best-Practice Performance of G-DI Injectorsp. 106
4.16 Issues with G-DI Spray Characterizationp. 106
4.16.1 G-DI Fuel Spray Measurement Considerationsp. 106
4.16.2 Spray Characterization Issuesp. 110
4.16.3 G-DI Spray Measurement Techniques and Hardwarep. 112
4.16.4 DV80 versus DV90 Measurement Accuracyp. 114
4.17 Summaryp. 116
Chapter 5 Mixture Formation Process and Approachesp. 121
5.1 Introductionp. 121
5.2 Relation of In-Cylinder Flow Characteristics to G-DI Combustionp. 121
5.2.1 Typical In-Cylinder Flow Characteristics in SI Enginesp. 121
5.2.2 G-DI Flow Field Characteristics and Considerationsp. 122
5.2.3 Effect of Fuel Injection Event on In-Cylinder Flow Fieldp. 126
5.3 Fuel-Air Mixing Processp. 128
5.3.1 In-Cylinder Charge Coolingp. 128
5.3.2 In-Cylinder Fuel-Air Mixing Characteristicsp. 131
5.4 Spray-Wall Interactionsp. 136
5.4.1 Interactions of G-DI Sprays with Interposed Surfacesp. 137
5.4.2 Spray-Wall-Interaction Phasing Issuesp. 147
5.4.3 Spray Wetted Footprintsp. 149
5.5 Unintended Spray-Wall Impingementp. 155
5.5.1 Effect of Spray-Wall Impingement on Combustion and Emissionsp. 155
5.5.2 Effect of Cylinder-Bore Fuel Wetting on Oil Dilutionp. 159
5.6 Wall Wetting During Cold Startp. 161
5.7 Summaryp. 164
Chapter 6 Combustion Process and Control Strategiesp. 165
6.1 Introductionp. 165
6.2 Engine Operating Modes and Fuel Injection Strategiesp. 166
6.2.1 Early-Injection, Homogeneous-Charge Operationp. 166
6.2.2 Late-Injection, Stratified-Charge Operationp. 166
6.2.3 Stoichiometric-Charge Operationp. 167
6.2.4 Slightly Lean, Stratified-Charge Operation for Improving Catalyst Light-Off Characteristicsp. 169
6.2.5 Operating Mode Transitionp. 171
6.2.6 Comparison of Operating Mode Complexityp. 172
6.2.7 G-DI Engine Operating Classesp. 174
6.3 Split Injection Strategyp. 174
6.3.1 Two-Stage Injection Strategy for Mode Transitionp. 174
6.3.2 Split Injection for Improving Full-Load Performancep. 176
6.3.3 Post Injection for Improving Catalyst Light-Off Characteristicsp. 177
6.3.4 Post Injection for NOx Storage Catalyst Regenerationp. 179
6.3.5 Split Injection for Control of Homogeneous-Charge, Compression-Ignition Enginep. 179
6.3.6 Implementation of Split Injection in Engine Operating Mapp. 180
6.4 Combustion Characteristicsp. 181
6.4.1 Homogeneous-Charge Combustionp. 181
6.4.2 Comparison of Stratified-Charge and Homogeneous-Charge Combustionp. 183
6.5 Effects of Engine Operating and Design Parameters on G-DI Combustionp. 186
6.5.1 Effects of Injection Timing and Ignition Timingp. 186
6.5.2 Effect of Spray Cone Anglep. 189
6.5.3 Effect of Exhaust Gas Recirculationp. 190
6.5.4 Knock Resistance Characteristicsp. 191
6.5.5 Comparison of Combustion Characteristics Between Air-Assisted and Single-Fluid G-DI Fuel Systemsp. 192
6.6 Summaryp. 193
Chapter 7 Deposit Issuesp. 195
7.1 Introductionp. 195
7.2 Injector Depositsp. 195
7.2.1 Negative Effects of Injector Depositsp. 197
7.2.2 Injector Deposit Formation Process and Characteristicsp. 201
7.2.3 Formation Mechanism for Internal Injector Depositsp. 204
7.2.4 Effect of Injector Tip Temperature on Injector Deposit Formationp. 204
7.2.5 Effect of Operating Cycle on Injector Deposit Formationp. 209
7.2.6 Effect of Injector Design on Injector Deposit Formationp. 210
7.2.7 Effect of Fuel Composition on Injector Deposit Formationp. 211
7.2.8 Deposit Formation Characteristics of Pulse-Pressurized, Air-Assisted G-DI Injectorsp. 212
7.3 Combustion Chamber Depositsp. 215
7.4 Intake Valve Depositsp. 216
7.5 Deposits on Other G-DI System Componentsp. 219
7.6 Summaryp. 220
Chapter 8 Emissions: Formation Mechanisms and Reduction Strategiesp. 223
8.1 Introductionp. 223
8.2 Hydrocarbon Emissionsp. 223
8.2.1 Hydrocarbon Emissions During Cold Start and Transient Operationsp. 223
8.2.2 Sources of Hydrocarbon Emissions During Light-Load, Stratified-Charge Operationp. 225
8.2.3 Effects of Operating Parameters on Hydrocarbon Emissionsp. 229
8.3 NOx Emissionsp. 232
8.3.1 NOx Emissions from Stratified-Charge G-DI Enginesp. 232
8.3.2 Exhaust Gas Recirculation for NOx Controlp. 233
8.3.3 Requirements for Lean-NOx Aftertreatment Systemsp. 235
8.3.4 Lean-NOx Catalystp. 235
8.3.5 Operating Principle of NOx Storage Catalystsp. 238
8.3.6 Operating Temperature Window for NOx Storage Catalystsp. 240
8.3.7 NOx Storage Catalyst Regeneration Issuesp. 241
8.3.8 System Layout for NOx Storage Catalyst: Close Coupling versus Underfloorp. 243
8.3.9 Effect of HC/NOx Ratio on NOx Storage Capacityp. 244
8.3.10 Requirements on NOx Storage Catalysts and Close-Coupled Catalystsp. 245
8.3.11 Sulfur Poisoning Issues and Desulfurization of NOx Storage Catalystsp. 246
8.3.12 NOx Storage Catalyst Diagnosticsp. 248
8.3.13 Urea-Based SCR Systemp. 250
8.3.14 Non-Thermal Plasma Aftertreatment Systemp. 251
8.4 Particulate Emissionsp. 252
8.4.1 General Characteristics of Particulate Emissions from Enginesp. 252
8.4.2 Particulate Emissions from PFI Enginesp. 253
8.4.3 Particulate Emissions from G-DI Enginesp. 254
8.4.4 Comparison of Particulate Emissions Between Single-Fluid and Air-Assisted G-DI Enginesp. 257
8.5 Summaryp. 259
Chapter 9 Fuel Economy: Potential and Challengesp. 261
9.1 Introductionp. 261
9.2 Fuel Economy Potential and Constraintsp. 261
9.2.1 Factors Contributing to Improved Fuel Economyp. 261
9.2.2 Comparison of Fuel Economy Benefits Between Single-Fluid and Air-Assisted G-DI Combustion Systemsp. 265
9.2.3 Fuel Economy versus Emissions Compromisep. 267
9.2.4 Opportunities for Future Fuel Economy Improvementp. 269
9.3 Gasoline Direct Injection Combined with Other Technologiesp. 272
9.3.1 Boosted G-DI Enginep. 272
9.3.2 Turbocharged versus Supercharged G-DI Enginesp. 276
9.3.3 Combustion and Emissions Characteristics of a Boosted G-DI Enginep. 276
9.3.4 Engine Shut-off Strategy During Idlep. 277
9.3.5 G-DI Engine Combined with CVTp. 282
9.3.6 G-DI Engine for Hybrid Propulsion System Applicationp. 283
9.4 Summaryp. 283
Chapter 10 Production and Prototype Gasoline Direct-Injection Systemsp. 285
10.1 Early DISC Engine Developmentp. 285
10.2 Mitsubishi Reverse-Tumble-Based Wall-Guided GDI Combustion Systemp. 288
10.3 Toyota Combustion Systemsp. 289
10.3.1 Toyota First-Generation, Swirl-Based, Wall-Guided D-4 Combustion Systemp. 289
10.3.2 Toyota Second-Generation, Wall-Guided D-4 Combustion Systemp. 295
10.4 Nissan Swirl-Based, Wall-Guided NEODi Combustion Systemp. 299
10.5 Renault Spray-Guided IDE Combustion Systemp. 300
10.6 Adam Opel Wall-Guided, ECOTEC DIRECT Combustion Systemp. 301
10.7 Audi Wall-Guided Combustion Systemp. 301
10.8 AVL Combustion Systemsp. 302
10.8.1 AVL Swirl-Based, Wall-Guided Combustion Systemp. 302
10.8.2 AVL Mixture Injection DMI Combustion Systemp. 302
10.9 FEV Air-Guided Combustion Systemp. 304
10.10 Fiat Combustion Systemp. 305
10.11 Ford Combustion Systemsp. 305
10.11.1 Ford Spray-Guided Combustion Systemp. 305
10.11.2 Ford Swirl-Based, Wall-Guided Combustion Systemp. 306
10.12 Honda Spray-Guided Combustion Systemp. 307
10.13 Isuzu Combustion Systemp. 307
10.14 Mazda Swirl-Based, Wall-Guided Combustion Systemp. 308
10.15 Mercedes-Benz Spray-Guided Combustion Systemp. 309
10.16 Orbital Combustion System Employing Pulse-Pressurized, Air-Assisted Fuel Injection Systemp. 310
10.17 PSA Reverse-Tumble-Based, Wall-Guided HPi Combustion Systemp. 310
10.18 Ricardo Tumble-Based, Wall-Guided Combustion Systemp. 311
10.19 Saab Spray-Guided SCC Combustion Systemp. 312
10.20 Subaru Spray-Guided Combustion Systemp. 313
10.21 Volkswagen Tumble-Based, Wall-Guided FSI Combustion Systemp. 313
10.22 Summaryp. 314
Referencesp. 317
Indexp. 339
About the Authorsp. 351