Cover image for Missing data in longitudinal studies : strategies for bayesian modeling and sensitivity analysis
Title:
Missing data in longitudinal studies : strategies for bayesian modeling and sensitivity analysis
Personal Author:
Publication Information:
London : Chapman & Hall, 2008
Physical Description:
xx, 303 p. : ill. ; 25 cm.
ISBN:
9781584886099
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010196714 QA276 D36 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ several data sets throughout that cover a range of study designs, variable types, and missing data issues.

The book first reviews modern approaches to formulate and interpret regression models for longitudinal data. It then discusses key ideas in Bayesian inference, including specifying prior distributions, computing posterior distribution, and assessing model fit. The book carefully describes the assumptions needed to make inferences about a full-data distribution from incompletely observed data. For settings with ignorable dropout, it emphasizes the importance of covariance models for inference about the mean while for nonignorable dropout, the book studies a variety of models in detail. It concludes with three case studies that highlight important features of the Bayesian approach for handling nonignorable missingness.

With suggestions for further reading at the end of most chapters as well as many applications to the health sciences, this resource offers a unified Bayesian approach to handle missing data in longitudinal studies.


Author Notes

Michael J. Daniels University of Florida Gainesville, U.S.A.
Joseph W. Hogan Brown University Providence, Rhode Island, U.S.A.


Table of Contents

Prefacep. xvii
1 Description of Motivating Examplesp. 1
1.1 Overviewp. 1
1.2 Dose-finding trial of an experimental treatment for schizophreniap. 2
1.2.1 Study and datap. 2
1.2.2 Questions of interestp. 2
1.2.3 Missing datap. 2
1.2.4 Data analysesp. 2
1.3 Clinical trial of recombinant human growth hormone (rhGH) for increasing muscle strength in the elderlyp. 4
1.3.1 Study and datap. 4
1.3.2 Questions of interestp. 4
1.3.3 Missing datap. 4
1.3.4 Data analysesp. 5
1.4 Clinical trials of exercise as an aid to smoking cessation in women: the Commit to Quit studiesp. 6
1.4.1 Studies and datap. 6
1.4.2 Questions of interestp. 6
1.4.3 Missing datap. 7
1.4.4 Data analysesp. 8
1.5 Natural history of HIV infection in women: HIV Epidemiology Research Study (HERS) cohortp. 9
1.5.1 Study and datap. 9
1.5.2 Questions of interestp. 9
1.5.3 Missing datap. 9
1.5.4 Data analysesp. 10
1.6 Clinical trial of smoking cessation among substance abusers: OASIS studyp. 11
1.6.1 Study and datap. 11
1.6.2 Questions of interestp. 11
1.6.3 Missing datap. 12
1.6.4 Data analysesp. 12
1.7 Equivalence trial of competing doses of AZT in HIV-infected children: Protocol 128 of the AIDS Clinical Trials Groupp. 13
1.7.1 Study and datap. 13
1.7.2 Questions of interestp. 14
1.7.3 Missing datap. 14
1.7.4 Data analysesp. 14
2 Regression Modelsp. 15
2.1 Overviewp. 15
2.2 Preliminariesp. 15
2.2.1 Longitudinal datap. 15
2.2.2 Regression modelsp. 17
2.2.3 Full vs. observed datap. 18
2.2.4 Additional notationp. 19
2.3 Generalized linear modelsp. 19
2.4 Conditionally specified modelsp. 20
2.4.1 Random effects models based on GLMsp. 21
2.4.2 Random effects models for continuous responsep. 22
2.4.3 Random effects models for discrete responsesp. 23
2.5 Directly specified (marginal) modelsp. 25
2.5.1 Multivariate normal and Gaussian process modelsp. 26
2.5.2 Directly specified models for discrete longitudinal responsesp. 28
2.6 Semiparametric regressionp. 31
2.6.1 Generalized additive models based on regression splinesp. 32
2.6.2 Varying coefficient modelsp. 34
2.7 Interpreting covariate effectsp. 34
2.7.1 Assumptions regarding time-varying covariatesp. 35
2.7.2 Longitudinal vs. cross-sectional effectsp. 36
2.7.3 Marginal vs. conditional effectsp. 37
2.8 Further readingp. 38
3 Methods of Bayesian Inferencep. 39
3.1 Overviewp. 39
3.2 Likelihood and posterior distributionp. 39
3.2.1 Likelihoodp. 39
3.2.2 Score function and information matrixp. 41
3.2.3 The posterior distributionp. 42
3.3 Prior Distributionsp. 43
3.3.1 Conjugate priorsp. 43
3.3.2 Noninformative priorsp. 46
3.3.3 Informative priorsp. 49
3.3.4 Identifiability and incomplete datap. 50
3.4 Computation of the posterior distributionp. 51
3.4.1 The Gibbs samplerp. 52
3.4.2 The Metropolis-Hastings algorithmp. 54
3.4.3 Data augmentationp. 55
3.4.4 Inference using the posterior samplep. 58
3.5 Model comparisons and assessing model fitp. 62
3.5.1 Deviance Information Criterion (DIC)p. 63
3.5.2 Posterior predictive lossp. 65
3.5.3 Posterior predictive checksp. 67
3.6 Nonparametric Bayesp. 68
3.7 Further readingp. 69
4 Worked Examples using Complete Datap. 72
4.1 Overviewp. 72
4.2 Multivariate normal model: Growth Hormone studyp. 72
4.2.1 Modelsp. 72
4.2.2 Priorsp. 73
4.2.3 MCMC detailsp. 73
4.2.4 Model selection and fitp. 73
4.2.5 Resultsp. 74
4.2.6 Conclusionsp. 75
4.3 Normal random effects model: Schizophrenia trialp. 75
4.3.1 Modelsp. 76
4.3.2 Priorsp. 77
4.3.3 MCMC detailsp. 77
4.3.4 Resultsp. 77
4.3.5 Conclusionsp. 78
4.4 Models for longitudinal binary data: CTQ I Studyp. 79
4.4.1 Modelsp. 80
4.4.2 Priorsp. 81
4.4.3 MCMC detailsp. 81
4.4.4 Model selectionp. 81
4.4.5 Resultsp. 82
4.4.6 Conclusionsp. 83
4.5 Summaryp. 84
5 Missing Data Mechanisms and Longitudinal Datap. 85
5.1 Introductionp. 85
5.2 Full vs. observed datap. 86
5.2.1 Overviewp. 86
5.2.2 Data structuresp. 87
5.2.3 Dropout and other processes leading to missing responsesp. 87
5.3 Full-data models and missing data mechanismsp. 89
5.3.1 Targets of inferencep. 89
5.3.2 Missing data mechanismsp. 90
5.4 Assumptions about missing data mechanismp. 91
5.4.1 Missing completely at random (MCAR)p. 91
5.4.2 Missing at random (MAR)p. 93
5.4.3 Missing not at random (MNAR)p. 93
5.4.4 Auxiliary variablesp. 94
5.5 Missing at random applied to dropout processesp. 96
5.6 Observed data posterior of full-data parametersp. 98
5.7 The ignorability assumptionp. 99
5.7.1 Likelihood and posterior under ignorabilityp. 99
5.7.2 Factored likelihood with monotone ignorable missingnessp. 101
5.7.3 The practical meaning of 'ignorability'p. 102
5.8 Examples of full-data models under MARp. 103
5.9 Full-data models under MNARp. 106
5.9.1 Selection modelsp. 107
5.9.2 Mixture modelsp. 109
5.9.3 Shared parameter modelsp. 112
5.10 Summaryp. 114
5.11 Further readingp. 114
6 Inference about Full-Data Parameters under Ignorabilityp. 115
6.1 Overviewp. 115
6.2 General issues in model specificationp. 116
6.2.1 Mis-specification of dependencep. 116
6.2.2 Orthogonal parametersp. 118
6.3 Posterior sampling using data augmentationp. 121
6.4 Covariance structures for univariate longitudinal processesp. 124
6.4.1 Serial correlation modelsp. 124
6.4.2 Covariance matrices induced by random effectsp. 128
6.4.3 Covariance functions for misaligned datap. 129
6.5 Covariate-dependent covariance structuresp. 130
6.5.1 Covariance/correlation matricesp. 130
6.5.2 Dependence in longitudinal binary modelsp. 134
6.6 Joint models for multivariate processesp. 134
6.6.1 Continuous response and continuous auxiliary covariatep. 135
6.6.2 Binary response and binary auxiliary covariatep. 137
6.6.3 Binary response and continuous auxiliary covariatep. 138
6.7 Model selection and model fit under ignorabilityp. 138
6.7.1 Deviance information criterion (DIC)p. 139
6.7.2 Posterior predictive checksp. 141
6.8 Further readingp. 143
7 Case Studies: Ignorable Missingnessp. 145
7.1 Overviewp. 145
7.2 Structured covariance matrices: Growth Hormone studyp. 145
7.2.1 Modelsp. 145
7.2.2 Priorsp. 146
7.2.3 MCMC detailsp. 146
7.2.4 Model selection and fitp. 147
7.2.5 Results and comparison with completers-only analysisp. 147
7.2.6 Conclusionsp. 149
7.3 Normal random effects model: Schizophrenia trialp. 149
7.3.1 Models and priorsp. 149
7.3.2 MCMC detailsp. 150
7.3.3 Model selectionp. 150
7.3.4 Results and comparison with completers-only analysisp. 150
7.3.5 Conclusionsp. 151
7.4 Marginalized transition model: CTQ I trialp. 151
7.4.1 Modelsp. 152
7.4.2 MCMC detailsp. 153
7.4.3 Model selectionp. 153
7.4.4 Resultsp. 154
7.4.5 Conclusionsp. 154
7.5 Joint modeling with auxiliary variables: CTQ II trialp. 155
7.5.1 Modelsp. 156
7.5.2 Priorsp. 157
7.5.3 Posterior samplingp. 157
7.5.4 Model selection and fitp. 157
7.5.5 Resultsp. 158
7.5.6 Conclusionsp. 159
7.6 Bayesian p-spline model: HERS CD4 datap. 159
7.6.1 Modelsp. 160
7.6.2 Priorsp. 161
7.6.3 MCMC detailsp. 161
7.6.4 Model selectionp. 161
7.6.5 Resultsp. 161
7.7 Summaryp. 162
8 Models for Handling Nonignorable Missingnessp. 165
8.1 Overviewp. 165
8.2 Extrapolation factorization and sensitivity parametersp. 166
8.3 Selection modelsp. 167
8.3.1 Background and historyp. 167
8.3.2 Absence of sensitivity parameters in the missing data mechanismp. 168
8.3.3 Heckman selection model for a bivariate responsep. 171
8.3.4 Specification of the missing data mechanism for longitudinal datap. 173
8.3.5 Parametric selection models for longitudinal datap. 174
8.3.6 Feasibility of sensitivity analysis for parametric selection modelsp. 175
8.3.7 Semiparametric selection modelsp. 176
8.3.8 Posterior sampling strategiesp. 180
8.3.9 Summary of pros and cons of selection modelsp. 181
8.4 Mixture modelsp. 181
8.4.1 Background, specification, and identificationp. 181
8.4.2 Identification strategies for mixture modelsp. 183
8.4.3 Mixture models with discrete-time dropoutp. 188
8.4.4 Mixture models with continuous-time dropoutp. 198
8.4.5 Combinations of MAR and MNAR dropoutp. 201
8.4.6 Mixture models or selection models?p. 202
8.4.7 Covariate effects in mixture modelsp. 203
8.5 Shared parameter modelsp. 206
8.5.1 General structurep. 206
8.5.2 Pros and cons of shared parameter modelsp. 207
8.6 Model selection and model fit in nonignorable modelsp. 209
8.6.1 Deviance information criterion (DIC)p. 209
8.6.2 Posterior predictive checksp. 213
8.7 Further readingp. 215
9 Informative Priors and Sensitivity Analysisp. 216
9.1 Overviewp. 216
9.1.1 General approachp. 216
9.1.2 Global vs. local sensitivity analysisp. 217
9.2 Some principlesp. 219
9.3 Parameterizing the full-data modelp. 220
9.4 Specifying priorsp. 222
9.5 Pattern mixture modelsp. 224
9.5.1 General parameterizationp. 224
9.5.2 Using model constraints to reduce dimensionality of sensitivity parametersp. 225
9.6 Selection modelsp. 226
9.7 Further readingp. 231
10 Case Studies: Nonignorable Missingnessp. 233
10.1 Overviewp. 233
10.2 Growth Hormone study: Pattern mixture models and sensitivity analysisp. 234
10.2.1 Overviewp. 234
10.2.2 Multivariate normal model under ignorabilityp. 234
10.2.3 Pattern mixture model specificationp. 235
10.2.4 MAR constraints for pattern mixture modelp. 235
10.2.5 Parameterizing departures from MARp. 236
10.2.6 Constructing priorsp. 238
10.2.7 Analysis using point mass MAR priorp. 238
10.2.8 Analyses using MNAR priorsp. 239
10.2.9 Summary of pattern mixture analysisp. 246
10.3 OASIS Study: Selection models, mixture models, and elicited priorsp. 248
10.3.1 Overviewp. 248
10.3.2 Selection model specificationp. 249
10.3.3 Selection model analyses under MAR and MNARp. 251
10.3.4 Pattern mixture model specificationp. 252
10.3.5 MAR and MNAR parameterizationsp. 252
10.3.6 Pattern mixture analysis under MARp. 255
10.3.7 Pattern mixture analysis under MNAR using elicited priorsp. 255
10.3.8 Summary: selection vs. pattern mixture approachesp. 259
10.4 Pediatric AIDS trial: Mixture of varying coefficient models for continuous dropoutp. 261
10.4.1 Overviewp. 261
10.4.2 Model specification: CD4 countsp. 263
10.4.3 Model specification: dropout timesp. 265
10.4.4 Summary of analyses under MAR and MNARp. 265
10.4.5 Summaryp. 266
Distributionsp. 268
Bibliographyp. 271
Author Indexp. 292
Indexp. 298