Skip to:Content
|
Bottom
Cover image for Chemical and biochemical catalysis for next generation biofuels
Title:
Chemical and biochemical catalysis for next generation biofuels
Series:
RSC energy and environment series ; no. 4
Publication Information:
Cambridge : Royal Society of Chemistry, 2011
Physical Description:
xi, 194 p. : ill. ; 24 cm.
ISBN:
9781849730303
General Note:
Includes index
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010263590 TP339 C443 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

The development of renewable and sustainable lignocellulosic biofuels is currently receiving worldwide attention and investment. Despite decades of research, there remain significant challenges to be overcome before these biofuels can be produced in large volumes at competitive prices. One obstacle is the lack of efficient and affordable catalytic systems to dissolve and hydrolyze polysaccharides into sugars. These sugars are then fed to microrganisms and fermented into biofuels. The price of these catalysts, be they biological, thermochemical, or chemical in nature, represent one of the largest costs in the conversion process. There are a number of catalytic schemes, each with their own advantages and disadvantages, available. This book presents a general yet substantial review of the most promising processes and the spectrum of biomass pretreatment, enzymes, chemical catalysts, and hybrid approaches of hydrolyzing biomass into fermentable sugars. It is the only currently available book that compares the biochemical, chemical, and thermochemical conversion processes to biofuel production.


Author Notes

Dr Blake Simmons is at the Sandia National Laboratories/Joint BioEnergy Institute, Emeryville, CA, USA.


Table of Contents

Blake A. SimmonsJ. Will MedlinDeepti Tanjoie and Jian Shi and Charles E. WymanDeepti Tanjoie and Jian Shi and Charles E. WymanVenkatesh Balan and Bryan Bah and Leonardo da Costa Sousa and Rebecca Garlock and Bruce E. DaleSupratim Datta and Rajat SapraChristopher R. ShaddixTed J. Amundsen and Alexander Katz
Chapter 1 Introductionp. 1
Referencesp. 4
Chapter 2 Biomass Availability and Sustainability for BiofuelsDominique Loqué and Aymerick Eudes and Fan Yang
2.1 Introductionp. 5
2.2 General Land Typesp. 6
2.2.1 Forest Landsp. 6
2.2.2 Agricultural Landsp. 7
2.2.3 Desert Landsp. 7
2.2.4 Tundra Landsp. 8
2.3 Potential Bioenergy Feedstock Landsp. 8
2.4 Bioenergy Feedstocksp. 9
2.5 Degraded and Non-productive Landsp. 13
2.5.1 Abandoned Landsp. 14
2.5.2 Dry Landsp. 15
2.5.3 Land Polluted with Heavy Metals and Other Contaminantsp. 19
2.5.4 Saline Landsp. 20
2.6 Waste Biomassp. 21
2.6.1 Forest Land Residuesp. 22
2.6.2 Farmland Residuesp. 23
2.6.3 Urban Land Residuesp. 24
2.7 Conclusionsp. 25
Acknowledgementsp. 26
Referencesp. 26
Chapter 3 Surface Science Studies Relevant for Metal-catalyzed Biorefining Reactionsp. 33
Chapter 4 Dilute Acid and Hydrothermal Pretreatment of Cellulosic Biomassp. 64
3.1 Introductionp. 33
3.2 Surface Science Contributions to Catalyst Designp. 34
3.2.1 Ethylene Epoxidationp. 35
3.2.2 Acetylene Hydrogenationp. 35
3.3 Biorefining Routes: Key Intermediates and Transformationsp. 36
3.3.1 Biomass Gasification Followed by Synthesis Gas Upgradingp. 36
3.3.2 Catalytic Pyrolysis and Catalytic Upgradingp. 37
3.3.3 Hydrolysis of Cellulosic Biomassp. 37
3.3.4 Aqueous Phase Processing of Sugarsp. 38
3.3.5 Upgrading of Fermentation Productsp. 38
3.4 Surface Science Methodologyp. 38
3.4.1 Adsorption and Reaction of Key Functional Groups on Metalsp. 41
3.4.2 Olefinsp. 41
3.4.3 Alcoholsp. 42
3.4.4 Aldehydes and Ketonesp. 43
3.4.5 Ethers and Epoxidesp. 44
3.4.6 Carboxylic Acids and Estersp. 44
3.4.7 Summary of Adsorption and Reaction Trendsp. 45
3.5 Reactions of Multifunctional Oxygenates on Metalsp. 45
3.5.1 Unsaturated Oxygenatesp. 46
3.5.2 Polyolsp. 51
3.6 Relating Surface Studies to Bioreflning Catalysis:Case Studiesp. 52
3.6.1 Reforming of Polyols and Sugarsp. 52
3.6.2 Hydrogenation of Dicarboxylic Acidsp. 54
3.6.3 Reactions of Hydroxymethylfurfural (HMF)p. 55
3.7 Summary and Directions of Future Researchp. 56
Acknowledgmentp. 57
Referencesp. 57
Chapter 4 Dilute Acid and Hydrothermal Pretreatment of Cellulosic Biomassp. 64
4.1 Introductionp. 64
4.2 Pretreatment Chemistryp. 66
4.3 Laboratory Reactorsp. 68
4.3.1 Batch Reactorsp. 68
4.3.2 Continuous Reactorsp. 73
4.4 Reaction Kinetics and Severity Factorp. 74
4.5 Pretreatment Effects on the Digestibility of Post-pretreatment Solidsp. 78
4.6 Feedstock Considerationsp. 79
4.7 Comparison of Hydrothermal and Dilute Acid Pretreatment Performancep. 80
4.8 Pretreatment Economicsp. 81
4.9 Conclusionsp. 83
Acknowledgementsp. 84
Referencesp. 84
Chapter 5 A Short Review on Ammonia-based Lignocellulosic Biomass Pretreatmentp. 89
5.1 Introductionp. 89
5.2 Alkaline Pretreatment Processesp. 90
5.2.1 Different Types of Alkali-based Pretreatment Processesp. 92
5.2.2 Ammonia and its Propertiesp. 92
5.2.3 History of Using Ammonia as a Pretreatment Chemicalp92
5.3 Details of the Afex Processp. 94
5.3.1 Pretreatment Variablesp. 95
5.3.2 Fundamental Understanding of the Alkaline Pretreatment Processp. 95
5.3.3 Reactions between Ammonia and Lignocellulosic Biomassp. 97
5.3.4 Afex Degradation Productsp. 97
5.3.5 Waste Streams and Environmental Issuesp. 98
5.4 Enzymatic Hydrolysisp. 98
5.5 Biomass Composition and Plant Species Classificationp. 99
5.6 Afex Performance on Grassesp. 101
5.6.1 Afex on Corn Stoverp. 101
5.6.2 Afex on Switchgrassp. 105
5.6.3 Afex on Rice Strawp. 105
5.6.4 Afex on Sugarcane Bagassep. 106
5.6.5 Afex on Sorghump. 106
5.6.6 Afex on Miscanthusp. 106
5.6.7 Afex on other Grasses and Biomassp. 107
5.7 Afex Comparison on Grasses versus Hardwoodsp. 107
5.8 Advantages of Afex during Fermentationp. 108
5.9 Logistics and Regional Biomass Processing Centersp. 108
5.10 Pellets and Logistics of Transportationp. 109
5.11 Storage and Stabilityp. 109
5.12 Co-producing Animal Feeds and Biofuels using Afex Pretreatmentp. 110
5.13 Economic Considerationsp. 110
5.14 Conclusionsp. 111
Acknowledgementsp. 111
Referencesp. 111
Chapter 6 Cellulases and Hemicellulases for Biomass Degradation: An Introductionp. 115
6.1 Introductionp. 115
6.2 Why is Lignocellulose so Hard to Break Down?p. 116
6.3 Pretreatment of Cellulosep. 117
6.4 Cellulasesp. 118
6.4.1 Mechanism of Cellulasesp. 119
6.4.2 Cellulase Architecturep. 120
6.4.3 Catalytic Domainp. 121
6.5 Carbohydrate-binding Modulesp. 121
6.5.1 Type A Surface Binding Cbms
6.5.2 Type B Polysaccharide-chain-binding Cbmsp. 122
6.5.3 Type C Small-sugar-binding Cbmsp. 122
6.6 Cbm Functionsp. 123|3
6.6.2 The Targeting Effectp. 123
6.6.3 Multiple Cbmsp. 124
6.7 Enzyme Optimization and Engineeringp. 124
6.8 Cellulosomesp. 125
6.8.1 Non-Catalytic Subunit: Scaflbldinp. 126
6.8.2 The Cohesin-dockerin Interactionp. 127
6.9 Hemicellulasesp. 127
6.9.1 Hemicellulose Types and Specificityp. 127
6.9.2 Depolymerlzation Enzymesp. 127
6.9.3 Accessory Enzymesp. 130
6.10 Thermophilic Cellulolytic and Hemicelluloytic Enzymesp. 130
6.11 Biochemical Conversion of Sugars to Biofuelsp. 131
6.12 Summaryp. 132
Acknowledgementsp. 132
Referencesp. 133
Chapter 7 Advances in Gasification for Biofuel Productionp. 136
7.1 Introductionp. 136
7.2 Biomass Feedstocks for Use in Gasifiersp. 138
7.3 Gasification Technologiesp. 139
7.3.1 Operational Characteristics of Gasifiersp. 140
7.3.2 Moderate Temperature, Indirect Gasificationp. 142
7.3.3 Oxygen-blown Direct Gasificationp. 146
7.3.4 Plasma Gasificationp. 148
7.4 Gas Cleanupp. 149
7.5 Conclusionsp. 152
References

p. 153

Chapter 8 Bioinspired Catalysts for Biofuels: Challenges and Future Directionsp. 156
8.1 Introductionp. 156
8.2 Substrate Bindingp. 157
8.2.1 Competitive Aqueous Solvationp. 158
8.2.2 Positional Requirementsp. 159
8.3 Acyl Transferp. 160
8.3.1 Hydrogen Bonding Molecular Receptorsp. 160
8.3.2 Aqueous Hydrogen Bonding Molecular Receptorsp. 162
8.4 Ester Hydrolysisp. 163
8.4.1 Aqueous Hydrogen Bonding Molecular Receptorsp. 165
8.5 Glycosidic Bond Hydrolysisp. 166
8.5.1 Intramolecularityp. 167
8.5.2 Cyclodextrinsp. 170
8.5.3 Catalytic Antibodiesp. 171
8.5.4 Combinatorial Polymer Catalystsp. 172
8.6 Aldol Condensationsp. 173
8.6.1 Homogeneous Organocatalysisp. 173
8.6.2 Heterogeneous Amine-functionalized Silicap. 174
8.7 Ketonizationp. 177
8.8 Dehydrationp. 177
8.9 Lignin Depolymerizationp. 179
8.10 Conclusions and Future Directionsp. 180
Referencesp. 181
Subject Indexp. 185
Go to:Top of Page