Cover image for Regio- and stereo-controlled oxidations and reductions
Title:
Regio- and stereo-controlled oxidations and reductions
Series:
Catalysts for fine chemical synthesis ; 5
Publication Information:
Chichester, England : John Wiley, 2007
ISBN:
9780470090220

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010149064 QD281.O9 R62 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Volume 5 in the Catalysts for Fine Chemical Synthesis series describes new procedures for the regio- and stereo-controlled transformations of compounds involving oxidation or reduction reactions. It describes a wide range of catalysts, including organometallic systems, biocatalysts and biomimetics. This volume also includes descriptions of a variety of conversions, including: Baeyer-Villiger oxidations; Epoxidation reactions; Hydroxylation reactions; Oxidation of alcohols to aldehydes, ketones and carboxylic acids; Reduction of ketones; and Reduction of alkenes including α, β-unsaturated carbonyl compounds. The book will be an important text for practising synthetic organic chemists in industry and academia. Protocols are written in a standard format by the authors who have discovered them Hints, tips and safety advice (where appropriate) is given to ensure that the procedures are reproducible Indications are given as to the range of starting materials used and, where appropriate, comparisons to alternative methodology Includes relevant references to the primary literature.


Author Notes

Stanley M. Roberts is the editor of Regio- and Stereo-Controlled Oxidations and Reductions, Volume 5, published by Wiley. John Whittall is the editor of Regio- and Stereo-Controlled Oxidations and Reductions, Volume 5, published by Wiley.


Table of Contents

John WhittallIldiko Gergely and Csaba Hegedus and Jozsef BakosFrederik Menges and Andreas PfaltzFrederik Menges and Pier Giorgio CozziJing Wu and Albert S.C. ChanTsuneo Imamoto and Aya KoideRyoichi Kuwano and Masaya SawamuraNatalia Dubrovina and Armin BornerKaoru Nakamura and Mikio Fujii and Yoshiteru IdaAntonio Rosales and Juan M. Cuerva and J. Enrique OltraPaul H. Moran and Julian P. Henschke and Antonio Zanotti-Gerosa and Ian C. LennonMichel (Massoud S.) Stephan and Barbara MoharMartin Wills and Yingjian Xu and Garden Docherty and Gary WoodwardJenny Wettergren and Hans AdolfssonSeverine Jeulin and Virginie Ratovelomanana-Vidal and Jean-Pierre GenetEstelle Burri and Silke B. Wendicke and Kay SeverinMinjie Guo and Dao Li and Yanhui Sun and Zhaoguo ZhangLiting Chai and Yangzhou Li and Quanrui WangGuang-yin Wang and Gang ZhaoMagnus Rueping and Erli Sugiono and Cengiz Azap and Thomas TheissmannMagnus Rueping and Thomas Theissmann and Andrey P. AntonchickSharaf Nawaz Khan and Nam Ju Cho and Hong-Seok KimSuribabu Jammi and Tharmalingan PunniyamurthyG.B.W.L Ligthart and R.H. Meijer and J. v. Buijtenen and J. Meuldijk and J.A.J.M. Vekemans and L.A. HulshofKrisada Kittigowittana and Manat Pohmakotr and Vichai Reutrakul and Chutima KuhakarnYujiro Hayashi and Mitsuru ShojiRosaria Ciriminna and Mario PagliaroTony K. M. Shing and Gulice Y.C. Leung and To LukAlessandra Lattanzi and Arrigo ScettriDavid Goeddel and Yian ShiGiovanni Sartori and Alan Armstrong and Raimondo Maggi and Alessandro Mazzacani and Raffaella Sartorio and France Bigi and Belen Dominguez-FernandezKazushige Hori and Keita Tani and Yasuo TohdaJerome Vachon and Celine Perollier and Alexandre Martinez and Jerome LacourMasakatsu Shibasaki and Hiroyuki Kakei and Shigeki MatsunagaAna Minatti and Karl Heinz DotzMike R. Pitts and John WhittallKatsuji Ito and Tsutomu KatsukiPaul Mather and John WhittallNan-Sheng Xie and Quan-Zhong Liu and Zhi-Bin Luo and Liu-Zhu Gong and Ai-Qiao Mi and Yao-Zhong JiangShigeki Habaue and Tomohisa TemmaTomoyuki Yamada and Satoshi Sakaguchi and Yasutaka IshiiBoyapati M. Choudary and Chinta Reddy and V. Reddy and Billakanti V. Prakash and Mannepalli L. Kantam and B. SreedharKiumar BahramiVinay V. Thakur and A. SudalaiRaffaella Del Litto and Guiseppina Roviello and Francesco RuffoAlessando Scarso and Giorgio Strukul
Series Prefacep. xvii
Preface to Volume 5p. xix
Abbreviationsp. xxi
1 Industrial Catalysts for Regio- or Stereo-Selective Oxidations and Reductions A Review of Key Technologies and Targetsp. 1
1.1 Introductionp. 2
1.2 Reduction of Carbon-Carbon Double Bondsp. 3
1.2.1 Privileged structures: [alpha]-amino acids and itaconic acidsp. 4
1.2.2 [beta]-Amino acidsp. 5
1.2.3 [alpha]-Alkyl substituted acidsp. 6
1.2.4 [alpha]-Alkoxy substituted acidsp. 8
1.2.5 Unsaturated nitrilesp. 9
1.2.6 Alkenes and allyl alcoholsp. 10
1.2.7 [alpha],[beta]-Unsaturated aldehyde reductionp. 10
1.3 Ketone and Imine Reductionp. 12
1.3.1 Catalytic hydrogenation of ketones and iminesp. 12
1.3.2 Asymmetric transfer hydrogenation (ATH) catalystsp. 15
1.3.3 Modified borane reagentsp. 20
1.3.4 Biocatalysts (alcohol dehydrogenases and ketoreductases)p. 21
1.4 Oxidationp. 23
1.4.1 Sharpless chiral epoxidation of allyl alcoholsp. 23
1.4.2 Dioxirane catalyzed epoxidationp. 23
1.4.3 Amines and iminium saltsp. 25
1.4.4 Phase transfer catalystsp. 25
1.4.5 The Julia-Colonna method (polyleucine oxidation)p. 26
1.4.6 Organocatalytic [alpha]-hydroxylation of ketonesp. 27
1.4.7 Baeyer-Villiger oxidationp. 27
1.4.8 Chiral sulfoxidesp. 28
Referencesp. 29
2 Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acidsp. 35
2.1 (S)-2,2[prime]-Bis{{[di(4-methoxyphenyl)phosphinyl]oxy}}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl as a ligand for rhodium-catalyzed asymmetric hydrogenationp. 36
2.1.1 Synthesis of (S)-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-Octahydro-1,1[prime]-bi-2-naphtholp. 37
2.1.2 Synthesis of (S)-2,2[prime]-Bis{{[di(4-methoxyphenyl)phosphinyl]oxy}}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthylp. 38
2.1.3 Asymmetric hydrogenation of Dimethyl itaconatep. 40
Conclusionp. 41
Referencesp. 41
2.2 Synthesis and application of phosphinite oxazoline iridium complexes for the asymmetric hydrogenation of alkenesp. 42
2.2.1 Synthesis of (4S,5S)-2-(5-Methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-propan-2-olp. 42
2.2.2 Synthesis of (4S,5S)-O-[1-Benzyl-1-(5-methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-2-phenyl-ethyl]-diphenylphosphinitep. 43
2.2.3 Synthesis of (4S,5S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{{2-(2-phenyl-5-methyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-2-diphenylphosphinite-propane}}iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]boratep. 45
2.2.4 Asymmetric hydrogenation of trans-[alpha]-Methylstilbenep. 46
Conclusionp. 47
Referencesp. 48
2.3 Synthesis and application of heterocyclic phosphine oxazoline (HetPHOX) iridium complexes for the asymmetric hydrogenation of alkenesp. 48
2.3.1 Synthesis of (4S)-tert-Butyl-2-(thiophene-2-yl)-4,5-dihydrooxazolep. 49
2.3.2 Synthesis of (4S)-tert-Butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazolep. 50
2.3.3 Synthesis of (4S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{{4-tert-butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole}}iridium(I)]-tetrakis [3,5-bis(trifluoromethyl)phenyl]boratep. 52
2.3.4 Asymmetric hydrogenation of trans-[alpha]-Methylstilbenep. 53
Conclusionp. 54
Referencesp. 54
2.4 (R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos] as a ligand for rhodium-catalyzed asymmetric hydrogenation of [alpha]-dehydroamino acidsp. 55
2.4.1 Synthesis of 3-Bromo-2,6-dimethoxypyridinep. 55
2.4.2 Synthesis of Bis(3,5-dimethylphenyl)phosphine chloridep. 56
2.4.3 Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridinep. 57
2.4.4 Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridinep. 59
2.4.5 2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphinoyl]-3,3[prime]-bipyridinep. 60
2.4.6 Optical resolution of ([plus or minus])-6 with (-) or (+)-2,3-0,0[prime]-Dibenzoyltartaric acid monohydrate [(R)-6 or (S)-6)]p. 61
2.4.7 (R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos, (R)-1]p. 62
2.4.8 Preparation of the stock solution of [Rh(R-Xyl-P-Phos)(COD)]BF[subscript 4]p. 63
2.4.9 A typical procedure for the asymmetric hydrogenation of methyl (Z)-2-Acetamidocinnamatep. 64
Referencesp. 65
2.5 (R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoXP) as a ligand for rhodium-catalyzed asymmetric hydrogenation of prochiral amino acid and amine derivativesp. 55
2.5.1 Synthesis of (R)-tert-Butyl(hydroxymethyl)methylphosphine-boranep. 66
2.5.2 Synthesis of (R)-Benzoyloxy(tert-butyl)methylphosphine-boranep. 67
2.5.3 Synthesis of (S)-tert-Butylmethylphosphine-boranep. 69
2.5.4 (R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoxP)p. 70
2.5.5 Asymmetric hydrogenation of Methyl (E)-3-acetylamino-2-butenoate catalyzed by Rh(I)-(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxalinep. 71
Conclusionp. 72
Referencesp. 73
2.6 Rhodium-catalyzed asymmetric hydrogenation of indolesp. 73
2.6.1 Synthesis of (R)-2-[(S)-1-(Dimethylamino)ethyl]-1-iodoferrocenep. 73
2.6.2 Synthesis of (R)-2-[(S)-1-(Diphenylphosphinyl)ethyl]-1-iodoferrocenep. 75
2.6.3 Synthesis of (R,R)-2,2[prime]-Bis[(S)-1-(diphenylphosphinyl)ethyl]-1,1[Prime]-biferrocenep. 78
2.6.4 Synthesis of (R,R)-2,2[Prime]-Bis[(S)-1-(diphenylphosphino)ethyl]-1,1[Prime]-biferrocene [abbreviated to (S,S)-(R,R)-PhTRAP]p. 80
2.6.5 Catalytic asymmetric hydrogenation of N-Acetyl-2-butylindolep. 82
2.6.6 Catalytic asymmetric hydrogenation of 3-Methyl-N-(p-toluenesulfonyl)indolep. 84
Conclusionp. 85
Referencesp. 86
3 Asymmetric Reduction of Ketonesp. 87
3.1 (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane as a versatile ligand for enantioselective hydrogenationsp. 89
3.1.1 Synthesis of (S,S)-1,3-Diphenylpropane-1,3-diolp. 89
3.1.2 Synthesis of (S,S)-Methanesulfonyloxy-1,3-diphenylpropane-1,3-diolp. 91
3.1.3 Synthesis of (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropanep. 91
Conclusionp. 93
Referencesp. 93
3.2 Synthesis of both enantiomers of 1-Phenylethanol by reduction of acetophenone with Geotrichum candidum IFO 5767p. 93
3.2.1 Cultivation of G. candidum IFO 5767p. 94
3.2.2 Synthesis of (S)-1-Phenylethanolp. 95
3.2.3 Synthesis of (R)-1-Phenylethanolp. 95
Conclusionp. 97
Referencesp. 97
3.3 Titanocene-catalyzed reduction of ketones in the presence of water. A convenient procedure for the synthesis of alcohols via free-radical chemistryp. 97
3.3.1 Titanocene-catalyzed reduction of Acetophenone in the presence of waterp. 98
3.3.2 Titanocene-catalyzed synthesis of Methyl 4-deuterio-4-phenyl-4-hydroxybutanoatep. 99
Referencesp. 100
3.4 Xyl-tetraPHEMP: a highly efficient biaryl ligand in the [diphosphine RuCl[subscript 2] diamine]-catalyzed hydrogenation of simple aromatic ketonesp. 101
3.4.1 Synthesis of Tri(3,5-dimethylphenyl)phosphine oxidep. 102
3.4.2 Synthesis of Bis(3,5-dimethylphenyl)-(2-iodo-3,5-dimethylphenyl)phosphine oxidep. 103
3.4.3 Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphinoyl]-biphenylp. 105
3.4.4 Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (rac)-Xyl-tetraPHEMP]p. 106
3.4.5 Synthesis of [(R)-N,N-Dimethyl(1-methyl)benzylaminato-C[superscript 2],N]-{{rac-4,4[prime],6,6[prime]-tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl}}-palladium(II) tetrafluoroborate and separation of the diastereomersp. 107
3.4.6 Synthesis of (S)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl: [abbreviated to (S)-Xyl-tetraPHEMP) and (R)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (R)-Xyl-tetraPHEMP]p. 108
3.4.7 Synthesis of [(R)-Xyl-tetraPHEMP RuCl[subscript 2] (R,R)-DPEN] and [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN]p. 110
3.4.8 Reduction of Acetophenone using [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] as a precatalystp. 111
Conclusionp. 112
Referencesp. 112
3.5 N-Arenesulfonyl- and N-Alkylsulfamoyl-1,2-diphenylethylenediamine ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of activated ketonesp. 113
3.5.1 Synthesis of N-Arenesulfonyl-1,2-diphenylethylenediaminesp. 113
3.5.2 Preparation of Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexesp. 114
3.5.3 Asymmetric transfer hydrogenation of Ethyl benzoylacetatep. 115
Conclusionp. 116
Referencesp. 116
3.6 The synthesis and application of BrXuPHOS: a novel monodentate phosphorus ligand for the asymmetric hydrogenation of ketonesp. 116
3.6.1 Synthesis of (S)-BrXuPHOSp. 117
3.6.2 Synthesis of (S,S,SS)-BrXuPHOS-Ru-DPENp. 119
3.6.3 General procedure of asymmetric hydrogenation of acetophenonep. 120
Conclusionp. 121
Acknowledgementp. 121
Referencesp. 121
3.7 In Situ formation of ligand and catalyst: application in ruthenium-catalyzed enantioselective reduction of ketonesp. 121
3.7.1 Synthesis of (S)-3-Fluoro-1-phenylethanolp. 122
Conclusionp. 123
Referencesp. 124
3.8 Synphos and Difluorphos as ligands for ruthenium-catalyzed hydrogenation of alkenes and ketonesp. 125
3.8.1 Synthesis of [RuCl((S)-SYNPHOS)(p-cymene)]Clp. 125
3.8.2 Synthesis of [RuCl((S)-DIFLUORPHOS)(p-cymene)]Clp. 126
3.8.3 Synthesis of [RuI((S)-DIFLUORPHOS)(p-cymene)]Ip. 127
3.8.4 Synthesis of [NH[subscript 2]R[subscript 2]] [(RuCl(PP))[subscript 2]([Mu]-Cl)[subscript 3]] PP = SYNPHOS or DIFLUORPHOS and R = Me or Etp. 127
3.8.5 Synthesis of [NH[subscript 2]Me[subscript 2]][RuCl-(S)-DIFLUORPHOS][subscript 2][[Mu]-Cl][subscript 3]p. 128
3.8.6 Synthesis of in situ generated [RuBr[subscript 2]((S)-SYNPHOS)] and [RuBr[subscript 2]((S)-DIFLUORPHOS)]p. 129
Conclusionp. 131
Referencesp. 131
3.9 An arene ruthenium complex with polymerizable side chains for the synthesis of immobilized catalystsp. 132
3.9.1 Synthesis of 2-Methyl-cyclohexa-2,5-dienecarboxylic acid 2-(2-methyl-acryloyloxy)-ethyl esterp. 133
3.9.2 Synthesis of [[eta superscript 6]-(2-Methyl-benzoic acid 2-(2-methyl-acryloyloxy)-ethyl ester)RuCl[subscript 2]][subscript 2]p. 134
Conclusionp. 135
Referencesp. 135
3.10 Selective reduction of carbonyl group in [beta], [gamma]-unsaturated [alpha]-alpha-ketoesters by transfer hydrogenation with Ru-(p-cymene) (TsDPEN)p. 135
3.10.1 Synthesis of Di-[Mu]-chloro-bis[chloro([eta superscript 6]-1-isopropyl-4-methyl-benzene)ruthenium(II)p. 136
3.10.2 Synthesis of ([plus or minus])-Monotosylate-1,2-diphenyl-1,2-ethylenediaminep. 136
3.10.3 Synthesis of Ru complex Ru(p-cymene)(TsDPEN)p. 138
3.10.4 Ru-TsDPEN catalyzed transfer hydrogenation reaction of [beta],[gamma]-unsaturated-[alpha]-ketoestersp. 139
Conclusionp. 140
Referencesp. 141
3.11 Preparation of polymer-supported Ru-TsDPEN catalysts and their use for the enantioselective synthesis of (S)-fluoxetinep. 141
3.11.1 Synthesis of the supported ligand 9p. 141
3.11.2 Synthesis of ligand 17p. 148
3.11.3 General procedure for asymmetric transfer hydrogenationp. 150
3.11.4 Preparation of (S)-Fluoxetine hydrochloridep. 151
Conclusionp. 154
Referencesp. 154
3.12 Polymer-supported chiral sulfonamide-catalyzed reduction of [beta]-keto nitriles: a practical synthesis of (R)-Fluoxetinep. 155
3.12.1 Synthesis of (R)-3-Amino-1-phenyl-propan-1-olp. 155
3.12.2 Synthesis of (R)-ethyl 3-hydroxy-3-phenylpropylcarbamatep. 156
3.12.3 Synthesis of (R)-3-(Methylamino)-1-phenylpropan-1-olp. 157
3.12.4 Synthesis of (R)-Fluoxetinep. 158
Conclusionp. 159
Referencesp. 159
4 Imine Reduction and Reductive Aminationp. 161
4.1 Metal-free reduction of imines: enantioselective Bronsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalystsp. 162
4.1.1 Synthesis of (R)-2,2[prime]-Bis-methoxymethoxy-[1,1[prime]] binaphthalene (MOM-BINOL)p. 162
4.1.2 Synthesis of (R)-3,3[prime]-Diiodo-2,2[prime]-bis(methoxymethoxy)-1,1[prime]-binaphthalenep. 164
4.1.3 Synthesis of 3,3[prime]-Bis-(3,5[prime]-bis-trifluoromethyl-phenyl)-2,2[prime]-bismethoxymethoxy [1,1[prime]-binaphthalene]p. 165
4.1.4 Synthesis of (R)-3,3[prime]-[3,5-Bis(trifluoromethyl)phenyl]-1,1[prime]-binaphthylphosphatep. 166
4.1.5 General procedure for the transfer hydrogenation of ketiminesp. 167
4.1.6 Synthesis of [1-(2,4-Dimethyl-phenyl)-ethyl]-(4-methoxy-phenyl)-aminep. 167
Conclusionp. 168
Referencesp. 170
4.2 Metal-free Bronsted acid-catalyzed transfer hydrogenation: enantioselective synthesis of tetrahydroquinolinesp. 170
4.2.1 General procedure for the transfer hydrogenation of quinolinesp. 170
4.2.2 Synthesis of 7-Chloro-4-phenyl-1,2,3,4-tetrahydroquinolinep. 172
4.2.3 Synthesis of (S)-2-Phenyl-1,2,3,4-tetrahydroquinolinep. 172
4.2.4 Synthesis of (R)-2-(2-(Benzo[1,3]dioxol-5-yl)ethyl)-1,2.3,4-tetrahydro-quinolinep. 173
Conclusionp. 174
Referencesp. 174
4.3 A highly stereoselective synthesis of 3[alpha]-Amino-23,24-bisnor-5[alpha]-cholane via reductive aminationp. 175
4.3.1 Synthesis of Tris[(2-ethylhexanoyl)oxy]borohydridep. 177
4.3.2 Synthesis of 3[alpha]-Acetamino-23,24-bisnor-5[alpha]-cholanep. 177
4.3.3 Synthesis of 3[alpha]-N-1-[N(3-[4-Aminobutyl])-1,3-diaminopropane]-23,24-bisnor-5[alpha]-cholanep. 179
Conclusionp. 181
Acknowledgementsp. 181
Referencesp. 181
5 Oxidation of Primary and Secondary Alcoholsp. 183
5.1 Copper(Il) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygenp. 183
5.1.1 Synthesis of copper(II) complex 1p. 184
5.1.2 Typical procedure for the oxidation of primary alcohols to aldehydesp. 185
Conclusionp. 186
Referencesp. 187
5.2 Solvent-free dehydrogenation of secondary alcohols in the absence of hydrogen abstractors using Robinson's catalystp. 187
5.2.1 Dehydrogenation of 2-Octanol using Ru(OCOCF[subscript 3])[subscript 2](CO)(PPh[subscript 3])[subscript 2] as a catalystp. 187
Conclusionp. 188
Referencesp. 188
5.3 2-Iodoxybenzoic acid (IBX)/n-Bu[subscript 4]NBr/CH[subscript 2]Cl[subscript 2]-H[subscript 2]O: a mild system for the selective oxidation of secondary alcoholsp. 188
5.3.1 Synthesis of 1-Hydroxy-5-decanonep. 189
Conclusionp. 192
Referencesp. 192
6 Hydroxylation, Epoxidation and Related Reactionsp. 193
6.1 Proline-catalyzed [alpha]-aminoxylation of aldehydes and ketonesp. 194
6.1.1 Synthesis of (R)-2-Anilinoxypropanolp. 195
6.1.2 Synthesis of (R)-7-Anilinoxy-1,4-dioxaspiro[4.5]decan-8-onep. 196
Conclusionp. 197
Referencesp. 198
6.2 Ru/Silia Cat TEMPO-mediated oxidation of alkenes to [alpha]-hydroxyacidsp. 199
6.2.1 Synthesis of Silia Cat TEMPOp. 199
6.2.2 Synthesis of 2-(4-Chlorophenyl)-1,2-propanediolp. 201
6.2.3 Synthesis of 2-(4-Chlorophenyl)-1,2-hydroxypropanoic acidp. 202
Conclusionp. 204
Referencesp. 204
6.3 Catalytic enantioselective epoxidation of trans-disubstituted and trisubstituted alkenes with arabinose-derived ulosep. 204
6.3.1 Synthesis of 2[prime],3[prime]-Diisobutyl acetalp. 205
6.3.2 Synthesis of ulosep. 206
6.3.3 Asymmetric epoxidation of trans-[alpha]-Methylstilbene using ulose as catalyst at 0 [degree]Cp. 208
Conclusionp. 209
Referencesp. 210
6.4 VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(2-Alkenyl)phenols. highly regio- and diastereoselective oxidative cyclisation to 2,3-Dihydrobenzofuranols and 3-Chromanolsp. 211
6.4.1 VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenolp. 212
6.4.2 VO(acac)[subscript 2]/TBHP/TFA catalyzed oxidative cyclization of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenolp. 213
Conclusionp. 214
Referencesp. 214
6.5 An Oxalolidinone ketone catalyst for the asymmetric epoxidation of cis-olefinsp. 215
6.5.1 Amadori rearrangement to give 1-Dibenzylamino-1-deoxy-D-fructosep. 215
6.5.2 Acetal protection of 1-Dibenzylamino-1-deoxy-D-fructosep. 216
6.5.3 Hydrogenation of the Dibenzylaminep. 217
6.5.4 Phosgene cyclization of aminoalcoholp. 218
6.5.5 Alcohol oxidationp. 220
6.5.6 Synthesis of ketone 2p. 221
6.5.7 Asymmetric epoxidation of cis-[beta]-Methylstyrenep. 222
Conclusionp. 223
Referencesp. 224
6.6 [alpha]-Fluorotropinone immobilised on silica: a new stereoselective heterogeneous catalyst for epoxidation of alkenes with oxonep. 225
6.6.1 Synthesis of silica KG-60-supported enantiomerically enriched [alpha]-Fluorotropinonep. 225
6.6.2 Synthesis of enantiomerically enriched epoxidesp. 226
Conclusionp. 227
Referencesp. 228
6.7 Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditionsp. 228
6.7.1 Synthesis of precursor of the azacrown etherp. 229
6.7.2 Synthesis of the azacrown etherp. 230
6.7.3 Synthesis of the azacrown ether-type quaternary ammonium saltp. 232
6.7.4 Asymmetric epoxidation of (E)-Chalcone catalyzed by the azacrown ether-type quaternary ammonium salt as chiral PTCp. 233
Conclusionp. 234
Referencesp. 235
6.8 Enantioselective epoxidation of olefins using phase transfer conditions and a chiral [azepinium][TRISPHAT] salt as catalystp. 235
6.8.1 Enantioselective epoxidation of 1-Phenyl-3,4-dihydronaphthalenep. 236
Conclusionp. 238
Referencesp. 239
6.9 Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters promoted by a Yttrium-biphenyldiol complexp. 239
6.9.1 Synthesis of (aS,R)-6,6[prime]-[(Propylene)dioxy]biphenyl-2,2[prime]-diolp. 240
6.9.2 Synthesis of (aS,R)-2,2-[Oxybis(ethylene)dioxy]-6,6[prime]-[(propylene)dioxy]biphenylp. 242
6.9.3 Synthesis of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diolp. 243
6.9.4 Enantiomeric enrichment of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diolp. 244
6.9.5 Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated estersp. 246
Referencesp. 248
6.10 Catalytic enantioselective epoxidation of [alpha],[beta]-enones with a binol-zinc-complexp. 249
6.10.1 Synthesis of (E)-(2S,3R)-Phenyl-(3-phenyloxiran-2-yl)methanonep. 249
Conclusionp. 250
Referencesp. 251
6.11 Asymmetric epoxidation of Phenyl-2-(3[prime]-pyridylvinyl)sulfone using polyleucine hydrogen peroxide gelp. 251
6.11.1 Preparation of polyleucine-hydrogen peroxide gelp. 252
6.11.2 Synthesis of Phenyl-2-(3[prime]-pyridylvinyl) sulfone (2)p. 252
Referencesp. 254
7 Oxidation of Ketones to Lactones or Enonesp. 255
7.1 Synthesis of 2-(Phosphinophenyl)pyrindine ligand and its application to palladium-catalyzed asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanonesp. 256
7.1.1 Synthesis of (7R)-2-(2-Hydroxyphenyl)-7-isopropyl-6,7-dihydro-5H-1-pyrindinep. 256
7.1.2 2-[2-(Diphenylphosphinoyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindinep. 258
7.1.3 2-[2-(Diphenylphosphanyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindinep. 259
7.1.4 Asymmetric Baeyer-Villiger oxidation of 3-Phenylcyclobutanonep. 261
Conclusionp. 262
Referencesp. 263
7.2 (D)-Codeinone from (D)-Dihydrocodeinone via the use of modified o-iodoxybenzoic acid (IBX). A convenient oxidation of ketones to enonesp. 263
7.2.1 Synthesis of IBXp. 264
7.2.2 Synthesis of codeinonep. 264
Referencesp. 266
8 Oxidative C-C Couplingp. 267
8.1 Enantioselective oxidative coupling of 2-Naphthols catalyzed by a novel chiral vanadium complexp. 267
8.1.1 Synthesis of 3,3-Diformyl-2,2[prime]-biphenolp. 268
8.1.2 Synthesis of chiral vanadium complexesp. 270
8.1.3 Catalytic oxidative coupling of 7-Alkoxy-1-naphthols by chiral vanadium complexesp. 271
Referencep. 272
8.2 Catalytic oxidative cross-coupling reaction of 2-Naphthol derivativesp. 273
8.2.1 Synthesis of Methyl 2,2[prime]-dihydroxy-1,1[prime]-binaphthalene-3-carboxylatep. 273
Conclusionp. 274
Referencesp. 275
8.3 Oxidative coupling of benzenes with [alpha],[beta]-unsaturated aldehydes by Pd(OAc)[subscript 2]/ HPMoV/ O[subscript 2] systemp. 275
8.3.1 Synthesis of Cinnamaldehydep. 276
Conclusionp. 278
Referencesp. 278
9 Oxidation of Sulfides and Sulfoxidesp. 279
9.1 The first example of direct oxidation of sulfides to sulfones by an osmate-molecular oxygen systemp. 280
9.1.1 Synthesis of osmate exchanged Mg-Al layered double hydroxides (LDH-OsO[subscript 4])p. 280
9.1.2 Synthesis of Methyl phenyl sulfone or Methylsulfonylbenzenep. 281
Conclusionp. 282
Referencesp. 283
9.2 Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide in the presence of zirconium tetrachloridep. 283
9.2.1 Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfoxide using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloridep. 284
9.2.2 Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfone using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloridep. 286
Conclusionp. 287
Referencesp. 287
9.3 WO[subscript 3]-30 % H[subscript 2]O[subscript 2]-cinchona alkaloids: a new heterogeneous catalytic system for asymmetric oxidation and kinetic resolution of racemic sulfoxidesp. 288
9.3.1 Synthesis of (R)-2-[[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimadazole {{(R)-(+)-Lansoprazole}}p. 288
9.3.2 Synthesis of (R)-(+)-Phenyl benzyl sulfoxidep. 290
Conclusionp. 293
Referencesp. 293
9.4 Benzyl-4,6-O-isopropylidene-[alpha]-(D)-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]amino] as a ligand for vanadium-catalyzed asymmetric oxidation of sulfidesp. 293
9.4.1 Synthesis of Benzyl-4,6-O-isopropylidene-[alpha]-D-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]imine]p. 294
9.4.2 Oxidation of Thioanisolep. 295
Conclusionp. 296
Referencesp. 296
9.5 Asymmetric sulfoxidation of aryl methyl sulfides with hydrogen peroxide in waterp. 297
9.5.1 Synthesis of complex (R)-BINAP)PtCl[subscript 2]p. 298
9.5.2 Synthesis of complex [((R)-BINAP)Pt((OH)][subscript 2](BF[subscript 4])[subscript 2]p. 299
9.5.3 Stereoselective catalytic oxidation of aryl methyl sulfidesp. 300
Conclusionp. 300
Referencesp. 301
Indexp. 303