Skip to:Content
|
Bottom
Cover image for Coding theory : algorithms, architectures and applications
Title:
Coding theory : algorithms, architectures and applications
Personal Author:
Publication Information:
Hoboken, NJ : John Wiley & Sons, 2007
Physical Description:
xi, 340 p. : ill. ; 25 cm.
ISBN:
9780470028612
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010186246 QA268 N48 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

One of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels.

Coding Theory: Algorithms, Architectures and Applications provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems.

Feature of the book include:

Unique presentation-like style for summarising main aspects Practical issues for implementation of coding techniques Sound theoretical approach to practical, relevant coding methodologies Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications.

This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communication systems


Author Notes

Dr. Andre Neubauer , Münster University of Applied Sciences, Germany

Jürgen Freudenberger , HTWG Konstanz, University of Applied Sciences, Germany

Volker Kühn , University of Rostock, Germany


Table of Contents

Prefacep. ix
1 Introductionp. 1
1.1 Communication Systemsp. 1
1.2 Information Theoryp. 3
1.2.1 Entropyp. 3
1.2.2 Channel Capacityp. 4
1.2.3 Binary Symmetric Channelp. 5
1.2.4 AWGN Channelp. 6
1.3 A Simple Channel Codep. 8
2 Algebraic Coding Theoryp. 13
2.1 Fundamentals of Block Codesp. 14
2.1.1 Code Parametersp. 16
2.1.2 Maximum Likelihood Decodingp. 19
2.1.3 Binary Symmetric Channelp. 23
2.1.4 Error Detection and Error Correctionp. 25
2.2 Linear Block Codesp. 27
2.2.1 Definition of Linear Block Codesp. 27
2.2.2 Generator Matrixp. 27
2.2.3 Parity-Check Matrixp. 30
2.2.4 Syndrome and Cosetsp. 31
2.2.5 Dual Codep. 36
2.2.6 Bounds for Linear Block Codesp. 37
2.2.7 Code Constructionsp. 41
2.2.8 Examples of Linear Block Codesp. 46
2.3 Cyclic Codesp. 62
2.3.1 Definition of Cyclic Codesp. 62
2.3.2 Generator Polynomialp. 63
2.3.3 Parity-Check Polynomialp. 67
2.3.4 Dual Codesp. 70
2.3.5 Linear Feedback Shift Registersp. 71
2.3.6 BCH Codesp. 74
2.3.7 Reed-Solomon Codesp. 81
2.3.8 Algebraic Decoding Algorithmp. 84
2.4 Summaryp. 93
3 Convolutional Codesp. 97
3.1 Encoding of Convolutional Codesp. 98
3.1.1 Convolutional Encoderp. 98
3.1.2 Generator Matrix in the Time Domainp. 101
3.1.3 State Diagram of a Convolutional Encoderp. 103
3.1.4 Code Terminationp. 104
3.1.5 Puncturingp. 106
3.1.6 Generator Matrix in the D-Domainp. 108
3.1.7 Encoder Propertiesp. 110
3.2 Trellis Diagram and the Viterbi Algorithmp. 112
3.2.1 Minimum Distance Decodingp. 113
3.2.2 Trellisesp. 115
3.2.3 Viterbi Algorithmp. 116
3.3 Distance Properties and Error Boundsp. 121
3.3.1 Free Distancep. 121
3.3.2 Active Distancesp. 122
3.3.3 Weight Enumerators for Terminated Codesp. 126
3.3.4 Path Enumeratorsp. 129
3.3.5 Pairwise Error Probabilityp. 131
3.3.6 Viterbi Boundp. 134
3.4 Soft-input Decodingp. 136
3.4.1 Euclidean Metricp. 136
3.4.2 Support of Punctured Codesp. 137
3.4.3 Implementation Issuesp. 138
3.5 Soft-output Decodingp. 140
3.5.1 Derivation of APP Decodingp. 141
3.5.2 APP Decoding in the Log Domainp. 145
3.6 Convolutional Coding in Mobile Communicationsp. 147
3.6.1 Coding of Speech Datap. 147
3.6.2 Hybrid ARQp. 150
3.6.3 EGPRS Modulation and Codingp. 152
3.6.4 Retransmission Mechanismp. 155
3.6.5 Link Adaptationp. 156
3.6.6 Incremental Redundancyp. 157
3.7 Summaryp. 160
4 Turbo Codesp. 163
4.1 LDPC Codesp. 165
4.1.1 Codes Based on Sparse Graphsp. 165
4.1.2 Decoding for the Binary Erasure Channelp. 168
4.1.3 Log-Likelihood Algebrap. 169
4.1.4 Belief Propagationp. 174
4.2 A First Encounter with Code Concatenationp. 177
4.2.1 Product Codesp. 177
4.2.2 Iterative Decoding of Product Codesp. 180
4.3 Concatenated Convolutional Codesp. 182
4.3.1 Parallel Concatenationp. 182
4.3.2 The UMTS Turbo Codep. 183
4.3.3 Serial Concatenationp. 184
4.3.4 Partial Concatenationp. 185
4.3.5 Turbo Decodingp. 186
4.4 EXIT Chartsp. 188
4.4.1 Calculating an EXIT Chartp. 189
4.4.2 Interpretationp. 191
4.5 Weight Distributionp. 196
4.5.1 Partial Weightsp. 196
4.5.2 Expected Weight Distributionp. 197
4.6 Woven Convolutional Codesp. 198
4.6.1 Encoding Schemesp. 200
4.6.2 Distance Properties of Woven Codesp. 202
4.6.3 Woven Turbo Codesp. 205
4.6.4 Interleaver Designp. 208
4.7 Summaryp. 212
5 Space-Time Codesp. 215
5.1 Introductionp. 215
5.1.1 Digital Modulation Schemesp. 216
5.1.2 Diversityp. 223
5.2 Spatial Channelsp. 229
5.2.1 Basic Descriptionp. 229
5.2.2 Spatial Channel Modelsp. 234
5.2.3 Channel Estimationp. 239
5.3 Performance Measuresp. 241
5.3.1 Channel Capacityp. 241
5.3.2 Outage Probability and Outage Capacityp. 250
5.3.3 Ergodic Error Probabilityp. 252
5.4 Orthogonal Space-Time Block Codesp. 257
5.4.1 Alamouti's Schemep. 257
5.4.2 Extension to More than Two Transmit Antennasp. 260
5.4.3 Simulation Resultsp. 263
5.5 Spatial Multiplexingp. 265
5.5.1 General Conceptp. 265
5.5.2 Iterative APP Preprocessing and Per-layer Decodingp. 267
5.5.3 Linear Multilayer Detectionp. 272
5.5.4 Original BLAST Detectionp. 275
5.5.5 QL Decomposition and Interference Cancellationp. 278
5.5.6 Performance of Multi-Layer Detection Schemesp. 287
5.5.7 Unified Description by Linear Dispersion Codesp. 291
5.6 Summaryp. 294
A Algebraic Structuresp. 295
A.1 Groups, Rings and Finite Fieldsp. 295
A.1.1 Groupsp. 295
A.1.2 Ringsp. 296
A.1.3 Finite Fieldsp. 298
A.2 Vector Spacesp. 299
A.3 Polynomials and Extension Fieldsp. 300
A.4 Discrete Fourier Transformp. 305
B Linear Algebrap. 311
C Acronymsp. 319
Bibliographyp. 325
Indexp. 335
Go to:Top of Page