Cover image for Yield and reliability in microwave circuit and system design
Title:
Yield and reliability in microwave circuit and system design
Personal Author:
Publication Information:
Boston : Artech House, 1993
ISBN:
9780890065273
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000002860157 TK7876.M43 1993 Open Access Book Book
Searching...

On Order

Summary

Summary

This reference is for anyone involved with microwave design. It tackles the practical aspects of microwave statistical design and introduces statistical design techniques that encompass many different applications. This presentation focuses on two main example areas - microwave circuits and systems - but any application with a complex relation between design variables and performance and design variable uncertainty can benefit from statistical design.


Table of Contents

Forewordp. xiii
Prefacep. xv
Acknowledgmentsp. xvii
Chapter 1 Introductionp. 1
1.1 The Economics of Yield and Reliability Designp. 1
1.2 Background Terminology and Scopep. 3
1.3 The Design and Development Processp. 5
1.4 Design and Development for Manufacturabilityp. 6
1.5 Testing Modelp. 7
1.5.1 Specificationsp. 8
1.5.2 Elements of the Test Modelp. 9
1.5.3 Failure Mechanismsp. 10
1.6 Manufacturing Modelp. 10
1.6.1 Definition of High Yieldp. 13
1.6.2 Ways To Achieve High Yieldp. 13
1.6.3 Parameter Aging and Environmental Modelp. 13
1.7 Designp. 14
1.7.1 Single-Point Optimization Design Approachp. 14
1.7.2 Extending Single-Point Procedures With Statistical Designp. 16
1.8 Sources of Parameter Value Uncertaintyp. 17
1.9 When To Use Statistical Circuit Designp. 19
1.9.1 Voltage Dividerp. 19
1.9.2 Low-Frequency Operational Amplifierp. 20
1.9.3 High-Frequency Amplifierp. 21
1.10 Examples of Statistical Circuit Designp. 21
1.10.1 Butterworth Filterp. 22
1.10.2 A 2- to 6-GHz Feedback Amplifierp. 23
1.10.3 Satellite-Receiver Systemp. 23
1.10.4 Tunable Active Filterp. 25
1.10.5 Summary of Examplesp. 25
1.11 Conclusionp. 25
1.12 Important Ideas From Chapter 1p. 26
Chapter 2 Yieldp. 29
2.1 Introductionp. 29
2.2 Two Ways To Describe Yieldp. 29
2.2.1 Mathematical Viewpoint: Calculating Yieldp. 30
2.2.2 Geometric Viewpoint: Seeing Yieldp. 30
2.3 Parameter Space and Performance Spacep. 30
2.3.1 Parameter Vector, Pp. 30
2.3.2 Parameter Space, Pp. 31
2.3.3 The Performance Space M, and the Measurement Vector Mp. 32
2.3.4 Design Specification, Sp. 33
2.3.5 Acceptable Performance Region, M[subscript a]p. 34
2.3.6 Performance Function G(P)p. 34
2.3.7 Acceptability Region in Parameter Space, P[subscript a]p. 36
2.3.8 Example--A Voltage Dividerp. 37
2.3.9 Tolerance Region, Tp. 37
2.4 Parameter Statisticsp. 38
2.4.1 Random Variablesp. 39
2.4.2 Probability Density Function, f[subscript p](P)p. 40
2.4.3 Average or Nominal Valuep. 41
2.4.4 Variancep. 42
2.4.5 Higher-Order Momentsp. 43
2.4.6 Uniquenessp. 43
2.4.7 Multiple Random Parameters and Their Joint PDFp. 43
2.4.8 Covariance Matrixp. 45
2.4.9 Independent and Uncorrelated Random Parametersp. 45
2.4.10 Higher-Order Statisticsp. 47
2.5 Geometric Approach to Yield Calculationp. 48
2.5.1 The General Geometric Approachp. 49
2.5.2 Yield With Uniform Independent Parametersp. 51
2.5.3 Example--A Voltage Dividerp. 52
2.6 Mathematical Approach to Yield Calculation and Yield as a Multidimensional Integralp. 53
2.7 Conclusionp. 54
2.8 Important Ideas From Chapter 2p. 54
Chapter 3 Calculating Yieldp. 57
3.1 Introductionp. 57
3.2 Monte Carlo Integrationp. 59
3.2.1 Fundamental Theorem of Monte Carlop. 59
3.2.2 Ratio of Volumes Interpretationp. 60
3.2.3 The Definite Integral of a Binary Functionp. 62
3.3 Monte Carlo Approach to Yield Calculationp. 63
3.3.1 Confidence Intervalsp. 65
3.3.2 Variance Reductionp. 66
3.3.3 Importance Samplingp. 68
3.4 Geometric Approach to Yield Calculationp. 70
3.5 The Parts of Yield Calculationp. 71
3.5.1 Backgroundp. 71
3.5.2 n-Dimensional Geometry and Convex Setsp. 71
3.5.3 The Yield-Calculation Elementsp. 72
3.6 Combining the Parts: Yield-Calculation Methodsp. 77
3.6.1 Regionalizationp. 77
3.6.2 Simplical Approximationp. 79
3.6.3 Efficient Simplical Approximationp. 80
3.6.4 Ellipsoidal Region Approximationp. 84
3.6.5 Radial Approximationp. 85
3.6.6 Polynomial Approximation With Cutsp. 86
3.6.7 Dynamic Constraint Approximationp. 90
3.6.8 Monte Carlop. 92
3.7 Conclusionp. 94
3.8 Important Ideas From Chapter 3p. 95
Chapter 4 Statistical Sensitivityp. 101
4.1 Introductionp. 101
4.1.1 Classic Sensitivityp. 102
4.1.2 Interpretation of Sensitivityp. 102
4.1.3 Sensitivity in Optimizationp. 103
4.1.4 Manufacturing Sensitivityp. 103
4.1.5 Three Sensitivity Conceptsp. 104
4.2 Illustrative Problemsp. 105
4.3 Review of Sensitivity Studiesp. 108
4.3.1 Single-Point Sensitivityp. 109
4.3.2 Multiparameter Sensitivityp. 110
4.3.3 Large-Change Sensitivityp. 111
4.3.4 Multiparameter Large-Change Sensitivityp. 112
4.3.5 Performance Variance Reduction, Taguchi Methodsp. 113
4.4 Manufacturing Sensitivityp. 117
4.4.1 Performance Statistical Sensitivityp. 117
4.4.2 Yield Statistical Sensitivityp. 122
4.5 Performance Variance Sensitivityp. 124
4.6 Performance Variance Factorp. 125
4.7 Statistical Sensitivity Calculationp. 126
4.7.1 Performance and Yield Factorp. 127
4.7.2 Average Performance and Yield Sensitivity Calculationp. 128
4.8 Statistical Sensitivity Management and Reductionp. 129
4.8.1 Sensitivity Managementp. 129
4.8.2 Sensitivity Reductionp. 131
4.9 Examplesp. 132
4.9.1 Lug Nutp. 132
4.9.2 Salen and Key Filterp. 134
4.10 Conclusionp. 137
4.11 Important Ideas from Chapter 4p. 139
Chapter 5 Yield Optimizationp. 143
5.1 Introductionp. 143
5.1.1 The Optimization Problemp. 144
5.1.2 Classification of Optimization Methods and Goalsp. 146
5.2 Single-Point (Nominal) Performance Optimizationp. 147
5.2.1 Objective (Error) Function Formulationp. 147
5.2.2 Gradient Methodsp. 149
5.2.3 Direct-Search Methodsp. 151
5.2.4 Brinkmanship Designp. 155
5.3 Statistical Optimizationp. 156
5.3.1 Design Centeringp. 156
5.3.2 Statistical-Optimization Error Functionp. 160
5.3.3 Yield-Optimization Approachesp. 160
5.4 Deterministic Methods for Yield Optimizationp. 161
5.4.1 Simplical Approximationp. 161
5.4.2 Multicircuitp. 163
5.5 Sampling-Based Methods for Yield Optimizationp. 164
5.5.1 Statistical Explorationp. 164
5.5.2 Parametric Samplingp. 166
5.5.3 Radial Explorationp. 168
5.6 Yield Factor Histogramsp. 169
5.7 Sensitivity Reductionp. 175
5.8 Conclusionp. 175
5.9 Important Ideas From Chapter 5p. 176
Chapter 6 Statistical Modeling and Validationp. 179
6.1 Introductionp. 179
6.2 Survey of Statistical Modelingp. 181
6.3 Elements of Statistical Modelingp. 185
6.4 Statistical Characterizationp. 187
6.5 Verificationp. 188
6.5.1 Tests for Multivariate Statistical Equivalencep. 188
6.5.2 The Generalized Kolmogorov-Smirnov Testp. 188
6.5.3 Nearest Neighbor Testp. 189
6.5.4 Multivariate Verification of FET Datap. 189
6.5.5 Summary of Multivariate Statistical Verificationp. 191
6.6 Statistical-Model Development and Extractionp. 192
6.6.1 Design Scenario Using the "Average" Devicep. 192
6.6.2 Momentsp. 193
6.6.3 Graphical Methods for Statistical Modeling: Frequency and Cumulative Frequency Distributionsp. 194
6.6.4 Truth Modelp. 195
6.6.5 Design Centering, Yield, and the Truth Modelp. 195
6.6.6 Statistical-Interpolation Modelp. 197
6.6.7 Summary of Statistical-Model Developmentp. 199
6.7 Proposed Framework for Statistical Modelingp. 200
6.7.1 Step 1: Characterizationp. 201
6.7.2 Step 2: Deterministic-Model Error Analysisp. 202
6.7.3 Step 3: Statistical-Model Developmentp. 203
6.7.4 Step 4: Extraction and Verificationp. 203
6.7.5 Step 5: Database Updatingp. 203
6.8 Conclusionp. 204
6.9 Important Ideas From Chapter 6p. 204
Chapter 7 Examples and Case Studiesp. 209
7.1 Introductionp. 209
7.2 Example--A Comprehensive Design Using a Lowpass Filterp. 209
7.2.1 Commentsp. 209
7.2.2 An Extended-Design Methodologyp. 210
7.2.3 The Statistical-Design Methodology in Practicep. 211
7.2.4 Summationp. 218
7.3 Example--A 2- to 6-GHz GaAs MMIC Feedback Amplifierp. 218
7.3.1 Commentsp. 218
7.3.2 Preliminary Informationp. 218
7.3.3 Statistical-Parameter Modelp. 222
7.3.4 Statistical Optimization and Analysisp. 222
7.3.5 Resultsp. 223
7.4 Example--A Satellite-Communications Systemp. 223
7.4.1 Commentsp. 223
7.4.2 Preliminary Informationp. 227
7.4.3 Statistical System-Design Methodologyp. 227
7.4.4 Analogue--Two Amplifiers and a Filterp. 228
7.4.5 Analogue--A Satellite Receiverp. 230
7.4.6 Summationp. 230
7.5 Case Study--A 0.5- to 2.5-GHz MMIC Gain Blockp. 234
7.5.1 Commentsp. 234
7.5.2 Preliminary Informationp. 234
7.5.3 Amplifier Designp. 235
7.5.4 Statistical-Response Prediction With the Database Modelp. 236
7.5.5 Summationp. 238
7.6 Case Study--Small-Signal Yield Analysisp. 238
7.6.1 Commentsp. 238
7.6.2 Preliminary Informationp. 238
7.6.3 Approachp. 239
7.6.4 Sensitivity Equations and Coefficientsp. 240
7.6.5 Analogue--A Broadband Low-Noise MMIC Distributed Amplifierp. 242
7.6.6 Summationp. 245
7.7 Case Study--A 7- to 11-GHz Low-Noise MMIC Amplifierp. 246
7.7.1 Commentsp. 246
7.7.2 Preliminary Informationp. 246
7.7.3 CAD-System Overviewp. 248
7.7.4 A Three-Stage 7- to 11-GHz Low-Noise Amplifierp. 249
7.7.5 Summationp. 253
7.8 Case Study--Design to Costp. 253
7.8.1 Commentsp. 253
7.8.2 Preliminary Informationp. 253
7.8.3 Design-to-Cost Frameworkp. 255
7.8.4 Resultsp. 255
Appendix A Monte Carlo Confidence-Interval Tablesp. 261
Indexp. 271