Cover image for Continuum mechanics
Title:
Continuum mechanics
Personal Author:
Publication Information:
Berlin : Springer, 2008
Physical Description:
xviii, 661 p. : ill. ; 24 cm.
ISBN:
9783540742975
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010177807 QA808.2 I73 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.


Table of Contents

1 Introductionp. 1
1.1 The Continuum Hypothesisp. 1
1.2 Elasticity, Plasticity, and Fracturep. 2
1.3 Fluidsp. 8
1.4 Viscoelasticityp. 12
1.5 An Outline for the Present Bookp. 16
2 Mathematical Foundationp. 19
2.1 Matrices and Determinantsp. 19
2.2 Coordinate Systems and Vectorsp. 23
2.3 Coordinate Transformationsp. 28
2.4 Scalar Fields and Vector Fieldsp. 30
Problemsp. 34
3 Dynamicsp. 37
3.1 Kinematicsp. 37
3.1.1 Lagrangian Coordinates and Eulerian Coordinatesp. 37
3.1.2 Material Derivative of an Intensive Quantityp. 40
3.1.3 Material Derivative of an Extensive Quantityp. 41
3.2 Equations of Motionp. 42
3.2.1 Euler's Axiomsp. 42
3.2.2 Newton's 3. Lawp. 46
3.2.3 Coordinate Stressesp. 47
3.2.4 Cauchy's Stress Theorem and Cauchy's Stress Tensorp. 50
3.2.5 Cauchy Equations of Motionp. 54
3.2.6 Alternative Derivation of the Cauchy Equationsp. 58
3.3 Stress Analysisp. 60
3.3.1 Principal Stressesp. 60
3.3.2 Stress Deviator and Stress Isotropp. 65
3.3.3 Extremal Values for Normal Stressp. 68
3.3.4 Maximum Shear Stressp. 69
3.3.5 Plane Stressp. 70
3.3.6 Mohr Diagram for Plane Stressp. 73
3.3.7 Mohr Diagram for General States of Stressp. 77
Problemsp. 79
4 Tensorsp. 83
4.1 Definition of Tensorsp. 83
4.2 Tensor Algebrap. 89
4.2.1 Isotropic Tensors of 4. Orderp. 94
4.2.2 Tensors as Polyadicsp. 96
4.3 Tensors of 2. Order. Part Onep. 97
4.3.1 Symmetric Tensors of 2. Orderp. 100
4.3.2 Alternative Invariantsp. 103
4.3.3 Deviator and Isotropp. 104
4.4 Tensor Fieldsp. 105
4.4.1 Gradient, Divergence, and Rotationp. 105
4.4.2 Del-Operatorp. 107
4.4.3 Orthogonal Coordinatesp. 108
4.4.4 Material Derivative of a Tensor Fieldp. 110
4.5 Rigid-Body Dynamicsp. 111
4.5.1 Kinematicsp. 112
4.5.2 Relative Motionp. 117
4.5.3 Kineticsp. 119
4.6 Tensors of 2. Order. Part Twop. 122
4.6.1 Rotation of Vectors and Tensorsp. 123
4.6.2 Polar Decompositionp. 124
4.6.3 Isotropic Functions of Tensorsp. 125
Problemsp. 129
5 Deformation Analysisp. 133
5.1 Strain Measuresp. 133
5.2 The Green Strain Tensorp. 134
5.3 Small Strains and Small Deformationsp. 139
5.3.1 Small Strainsp. 140
5.3.2 Small Deformationsp. 141
5.3.3 Coordinate Strains in Cylindrical Coordinates and Spherical Coordinatesp. 142
5.3.4 Principal Strains and Principal Directions of Strainsp. 144
5.3.5 Strain Isotrop and Strain Deviatorp. 145
5.3.6 Rotation Tensor for Small Deformationsp. 145
5.3.7 Small Strains in a Material Surfacep. 147
5.3.8 Mohr Diagram for Strainp. 148
5.3.9 Equations of Compatibilityp. 148
5.3.10 Compatibility Equations as Sufficient Conditionsp. 150
5.4 Rates of Deformation, Strain, and Rotationp. 151
5.4.1 Rate of Deformation Matrix and Rate of Rotation Matrix in Cylindrical and Spherical Coordinatesp. 158
5.5 Large Deformationsp. 160
5.5.1 Special Types of Deformations and Flowsp. 166
5.5.2 The Continuity Equation in a Particlep. 172
5.5.3 Reduction to Small Deformationsp. 172
5.5.4 Deformation with Respect to the Present Configurationp. 173
5.6 The Piola-Kirchhoff Stress Tensorsp. 175
Problemsp. 178
6 Work and Energyp. 183
6.1 Mechanical Energy Balancep. 183
6.1.1 The Work-Energy Equation for Rigid Bodiesp. 186
6.1.2 Conjugate Stress Tensors and Deformation Tensorsp. 189
6.2 The Principle of Virtual Powerp. 190
6.3 Thermal Energy Balancep. 192
6.3.1 Thermodynamic Introductionp. 192
6.3.2 Thermal Energy Balancep. 193
6.4 The Second Law of Thermodynamicsp. 195
Problemsp. 198
7 Theory of Elasticityp. 199
7.1 Introductionp. 199
7.2 The Hookean Solidp. 200
7.2.1 An Alternative Development of the Generalized Hooke's Lawp. 205
7.2.2 Strain Energyp. 206
7.3 Two-Dimensional Theory of Elasticityp. 207
7.3.1 Plane Stressp. 207
7.3.2 Plane Displacementsp. 213
7.3.3 Airy's Stress Functionp. 217
7.3.4 Airy's Stress Function in Polar Coordinatesp. 223
7.3.5 Axial Symmetryp. 229
7.4 Torsion of Cylindrical Barsp. 232
7.4.1 The Coulomb Theory of Torsionp. 232
7.4.2 The Saint-Venant Theory of Torsionp. 234
7.4.3 Prandtl's Stress Functionp. 238
7.4.4 The Membrane Analogyp. 241
7.5 Thermoelasticityp. 244
7.5.1 Constitutive Equationsp. 244
7.5.2 Plane Stressp. 245
7.5.3 Plane Displacementsp. 248
7.6 Hyperelasticityp. 249
7.6.1 Elastic Energyp. 249
7.6.2 The Basic Equations of Hyperelasticityp. 252
7.6.3 The Uniqueness Theoremp. 258
7.7 Stress Waves in Elastic Materialsp. 260
7.7.1 Longitudinal Waves in Cylindrical Barsp. 260
7.7.2 The Hopkinson Experimentp. 266
7.7.3 Plane Elastic Wavesp. 268
7.7.4 Elastic Waves in an Infinite Mediump. 270
7.7.5 Seismic Wavesp. 270
7.7.6 Reflection of Elastic Wavesp. 271
7.7.7 Tensile Fracture Due to Compression Wavep. 272
7.7.8 Surface Waves. Rayleigh Wavesp. 273
7.8 Anisotropic Materialsp. 274
7.8.1 Hyperelasticityp. 276
7.8.2 Materials with one Plane of Symmetryp. 277
7.8.3 Three Orthogonal Symmetry Planes. Orthotropyp. 279
7.8.4 Transverse Isotropyp. 281
7.8.5 Isotropyp. 283
7.9 Composite Materialsp. 284
7.9.1 Laminap. 285
7.9.2 From Lamina Axes to Laminate Axesp. 288
7.9.3 Engineering Parameters Related to Laminate Axesp. 290
7.9.4 Plate Laminate of Unidirectional Laminasp. 290
7.10 Large Deformationsp. 292
7.10.1 Isotropic Elasticityp. 293
7.10.2 Hyperelasticityp. 294
Problemsp. 297
8 Fluid Mechanicsp. 303
8.1 Introductionp. 303
8.2 Control Volume. Reynolds' Transport Theoremp. 306
8.2.1 Alternative Derivation of the Reynolds' Transport Theoremp. 309
8.2.2 Control Volume Equationsp. 310
8.2.3 Continuity Equationp. 312
8.3 Perfect Fluid [identical with] Eulerian Fluidp. 313
8.3.1 Bernoulli's Equationp. 315
8.3.2 Circulation and Vorticityp. 319
8.3.3 Sound Wavesp. 322
8.4 Linearly Viscous Fluid = Newtonian Fluidp. 323
8.4.1 Constitutive Equationsp. 323
8.4.2 The Navier-Stokes Equationsp. 330
8.4.3 Dissipationp. 333
8.4.4 The Energy Equationp. 335
8.4.5 The Bernoulli Equation for Pipe Flowp. 336
8.5 Potential Flowp. 339
8.5.1 The D'alembert Paradoxp. 343
8.6 Non-Newtonian Fluidsp. 343
8.6.1 Introductionp. 343
8.6.2 Generalized Newtonian Fluidsp. 344
8.6.3 Viscometric Flows. Kinematicsp. 347
8.6.4 Material Functions for Viscometric Flowsp. 353
8.6.5 Extensional Flowsp. 356
Problemsp. 358
9 Viscoelasticityp. 361
9.1 Introductionp. 361
9.2 Linearly Viscoelastic Materialsp. 368
9.2.1 Mechanical Modelsp. 368
9.2.2 General Response Equationp. 376
9.2.3 The Boltzmann Superposition Principlep. 377
9.2.4 Linearly Viscoelastic Material Modelsp. 380
9.2.5 Beam Theoryp. 385
9.2.6 Torsionp. 388
9.3 The Correspondence Principlep. 388
9.3.1 Quasi-Static Problemsp. 391
9.4 Dynamic Responsep. 394
9.4.1 Complex Notationp. 398
9.4.2 Viscoelastic Foundationp. 404
9.5 Viscoelastic Wavesp. 407
9.5.1 Acceleration Waves in a Cylindrical Barp. 407
9.5.2 Progressive Harmonic Wave in a Cylindrical Barp. 411
9.5.3 Waves in Infinite Viscoelastic Mediump. 414
9.6 Non-Linear Viscoelasticityp. 419
9.6.1 The Norton Fluidp. 422
9.6.2 Steady Bending of Non-Linearly Viscoelastic Beamsp. 423
Problemsp. 425
10 Theory of Plasticityp. 433
10.1 Introductionp. 433
10.2 Yield Criteriap. 435
10.2.1 The Mises Yield Criterionp. 440
10.2.2 The Tresca Yield Criterionp. 444
10.2.3 Yield Criteria for Hardening Materialsp. 449
10.3 Flow Rulesp. 451
10.3.1 The General Flow Rulep. 451
10.3.2 Elastic-Perfectly Plastic Tresca Materialp. 452
10.3.3 Elastic-Perfectly Plastic Mises Materialp. 457
10.4 Elastic-Plastic Analysisp. 458
10.4.1 Plane Stress Problemsp. 459
10.4.2 Plane Strain Problemsp. 463
10.4.3 General Two-Dimensional Problemp. 466
10.5 Limit Load Analysis for Plane Beams and Framesp. 471
10.5.1 Introductionp. 471
10.5.2 Plastic Collapsep. 471
10.5.3 Limit Load Theorem for Plane Beams and Framesp. 477
10.6 The Drucker Postulatep. 479
10.7 Limit Load Analysisp. 483
10.7.1 Lower Bound Limit Load Theoremp. 485
10.7.2 Upper Bound Limit Load Theoremp. 486
10.7.3 Discontinuity in Stress and Velocityp. 489
10.7.4 Indentationp. 491
10.8 Yield Line Theoryp. 495
10.9 Mises Material with Isotropic Hardeningp. 503
10.10 Yield Criteria Dependent on the Mean Stressp. 507
10.10.1 The Mohr-Coulomb Criterionp. 507
10.10.2 The Drucker-Prager Criterionp. 510
10.11 Viscoplasticityp. 511
10.11.1 Introductionp. 511
10.11.2 The Bingham Elasto-Viscoplastic Modelsp. 511
Problemsp. 515
11 Constitutive Equationsp. 517
11.1 Introductionp. 517
11.2 Objective Tensor Fieldsp. 519
11.2.1 Tensor Components in Two Referencesp. 521
11.2.2 Material Derivative of Objective Tensorsp. 522
11.2.3 Deformations with Respect to Fixed Reference Configurationp. 524
11.2.4 Deformation with Respect to the Present Configurationp. 527
11.3 Corotational Derivativep. 530
11.4 Convected Derivativep. 531
11.5 General Principles of Constitutive Theoryp. 532
11.5.1 Present Configuration as Reference Configurationp. 536
11.6 Material Symmetryp. 539
11.6.1 Symmetry Groupsp. 540
11.6.2 Isotropyp. 542
11.6.3 Change of Reference Configurationp. 543
11.6.4 Classification of Simple Materialsp. 544
11.6.5 Liquid Crystalsp. 548
11.7 Thermoelastic Materialsp. 548
11.8 Thermoviscous Fluidsp. 551
11.9 Advanced Fluid Modelsp. 552
11.9.1 Introductionp. 552
11.9.2 Stokesian Fluids or Reiner-Rivlin Fluidsp. 553
11.9.3 Corotational Fluid Modelsp. 554
11.9.4 Quasi-Linear Corotational Fluid Modelsp. 556
11.9.5 Oldroyd Fluidsp. 557
12 Tensors in Euclidean Space E[subscript 3]p. 561
12.1 Introductionp. 561
12.2 General Coordinates. Base Vectorsp. 561
12.2.1 Covariant and Contravariant Transformationsp. 564
12.2.2 Fundamental Parameters of a Coordinate Systemp. 567
12.2.3 Orthogonal Coordinatesp. 568
12.3 Vector Fieldsp. 569
12.4 Tensor Fieldsp. 573
12.4.1 Tensor Components. Tensor Algebrap. 573
12.4.2 Symmetric Tensors of 2. Orderp. 575
12.4.3 Tensors as Polyadicsp. 576
12.5 Differentiation of Tensorsp. 577
12.5.1 Christoffel Symbolsp. 577
12.5.2 Absolute and Covariant Derivatives of Vector Componentsp. 578
12.5.3 The Frenet-Serret Formulas of Space Curvesp. 582
12.5.4 Divergence and Rotation of a Vector Fieldp. 583
12.5.5 Orthogonal Coordinatesp. 584
12.5.6 Absolute and Covariant Derivatives of Tensor Componentsp. 586
12.6 Integration of Tensor Fieldsp. 591
12.7 Two-Point Tensor Componentsp. 592
12.8 Relative Tensorsp. 595
Problemsp. 596
13 Continuum Mechanics in Curvilinear Coordinatesp. 599
13.1 Introductionp. 599
13.2 Kinematicsp. 599
13.3 Deformation Analysisp. 601
13.3.1 Strain Measuresp. 601
13.3.2 Small Strains and Small Deformationsp. 603
13.3.3 Rates of Deformation, Strain, and Rotationp. 605
13.3.4 Orthogonal Coordinatesp. 605
13.3.5 General Analysis of Large Deformationsp. 607
13.3.6 Convected Coordinatesp. 608
13.4 Convected Derivatives of Tensorsp. 611
13.5 Stress Tensors. Equations of Motionp. 615
13.5.1 Physical Stress Componentsp. 615
13.5.2 Cauchy Equations of Motionp. 617
13.6 Basic Equations in Elasticityp. 618
13.7 Basic Equations in Fluid Mechanicsp. 619
13.7.1 Perfect Fluids [identical with] Eulerian Fluidsp. 620
13.7.2 Linearly Viscous Fluids [identical with] Newtonian Fluidsp. 620
13.7.3 Orthogonal Coordinatesp. 621
Problemsp. 623
Appendicesp. 625
Appendix A Del-Operatorp. 625
Appendix B The Navier - Stokes Equationsp. 626
Appendix C Integral Theoremsp. 627
Referencesp. 643
Symbolsp. 645
Indexp. 649