Cover image for New trends in control theory
Title:
New trends in control theory
Personal Author:
Series:
Series on stability, vibration and control of systems. Series A ; v. 19.

Series on stability, vibration, and control of systems. Series A ; v. 19.
Publication Information:
Singapore ; World Scientific, 2013.
Physical Description:
xiii, 722 p. : ill. ; 24 cm.
ISBN:
9789814425940
Subject Term:
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010239533 QA402.3 I93 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives the basics of classical control theory, both linear and nonlinear. The third chapter shows the key role that Euclidean group of rigid motions plays in modern robotics and biomechanics. The fourth chapter gives an overview of modern quantum control, from both theoretical and measurement perspectives. The fifth chapter presents modern control and synchronization methods in complex systems and human crowds. The appendix provides the rest of the background material complementary to the introductory chapter.The book is designed as a one-semester course for engineers, applied mathematicians, computer scientists and physicists, both in industry and academia. It includes a most relevant bibliography on the subject and detailed index.


Table of Contents

1 Introductionp. 1
1.1 Geometrical Preliminariesp. 1
1.1.1 Variational Method of Classical Mechanicsp. 1
1.1.2 Lie Algebra Mechanicsp. 4
1.1.3 Covariant Dynamics Modellingp. 10
1.1.4 Exterior Differential Formsp. 14
1.1.5 Hodge Theory Basicsp. 19
1.1.6 Principal G-Bundles, Connections and G-Snakesp. 25
1.1.7 Wei-Norman Exponential Methodp. 29
1.2 Quantum Preliminariesp. 34
1.2.1 Basic Quantum Mechanicsp. 34
1.2.2 Basic Quantum Fieldsp. 48
1.2.3 Wigner Function Basicsp. 58
1.2.4 Path Integral Quantizationp. 60
1.2.5 Gauge Path-Integral via Hodge Decompositionp. 65
2 Basics of Classical Control Theoryp. 69
2.1 Linear Systems and Signalsp. 69
2.1.1 Laplace Transform and Transfer-Function Methodsp. 69
2.1.2 Fourier and Wavelet Transforms for Linear Signalsp. 74
2.1.3 Kalman's Modular State-Space and Filtering Methodsp. 93
2.1.4 Controllability of Linear Systemsp. 106
2.1.5 Stability of Linear Systemsp. 110
2.1.6 Naive Approaches to Nonlinear Systemsp. 113
2.2 Nonlinear Control Systemsp. 129
2.2.1 Command/Control in Human-Robot Interactionsp. 129
2.2.2 Nonlinear Controllabilityp. 133
2.2.3 Basics of Geometric Nonlinear Controlp. 134
2.2.4 Lie-Derivative Based Nonlinear Feedback Controlp. 148
2.2.5 Hamiltonian Optimal Control and Maximum Principlep. 150
2.2.6 Path-Integral Optimal Control of Stochastic Systemsp. 155
2.2.7 Fuzzy-Logic Controlp. 159
3 Euclidean Group in Modern Robotics and Biomechanicsp. 179
3.1 Introduction to Euclidean Groupp. 179
3.1.1 Euclidean Kinematicsp. 181
3.1.2 Basic Dynamics on SE(3)p. 184
3.1.3 Coupled Newton-Euler Dynamics on SE(3)p. 186
3.1.4 Introduction to Hamiltonian Biomechanicsp. 189
3.1.5 Library of Basic Hamiltonian Systemsp. 195
3.2 Euclidean Group in Modern Roboticsp. 202
3.2.1 Constructive Controllability for Motion on Lie Groupsp. 202
3.2.2 SE(3)-Group Control Examplep. 203
3.2.3 Examples of SE(3)-Subgroups Controlp. 207
3.2.4 Nonholonomic Dynamics of a Snakeboardp. 210
3.2.5 Nonholonomic Kinematics of Snakes on Lie Groupsp. 212
3.2.6 Left-Invariant Kinematic Control Systemsp. 216
3.2.7 Geometrical Integration and Optimal Control on SE(3)p. 222
3.2.8 Euclidean-Invariant Lagrangiansp. 226
3.2.9 Dynamical Games on SE(2)p. 233
3.2.10 Nonholonomic Robotics and Their Optimal Controlp. 240
3.3 Euclidean Group in Modern Biomechanicsp. 246
3.3.1 Humanoid Robotics vs. Human Biodynamicsp. 250
3.3.2 Euclidean Jolt in Modern Injury Mechanicsp. 278
4 Quantum Control: Theory and Measurementp. 293
4.1 Introduction to Quantum Controlp. 293
4.1.1 Real-Time Quantum Feedback Controlp. 296
4.1.2 Kraus Maps and Superoperator Formalismp. 297
4.1.3 Symplectic Propagators and Rotating Wavesp. 304
4.2 Quantum Stochastic Systems: H ∞ and LQG Controlsp. 306
4.2.1 Linear Quantum Stochastic Systemsp. 306
4.2.2 Physical Realizability of Linear QSDEsp. 308
4.2.3 Dissipation Propertiesp. 310
4.2.4 H ∞ Controller Synthesisp. 313
4.2.5 Quantum LQG Problem Formulationp. 316
4.2.6 From LQG to LMI Problemp. 319
4.2.7 LQG Controller Design Examplep. 324
4.3 Quantum Control Landscapesp. 325
4.3.1 Introducing Quantum Control Landscapesp. 325
4.3.2 Typical Quantum Control Problemsp. 328
4.3.3 Gradient and Hessian formulasp. 329
4.3.4 The Control Objectivep. 333
4.3.5 Control of Quantum Gatesp. 337
4.3.6 Geometry of Quantum Control Landscapesp. 339
4.3.7 State and Gate Control Problems and Solutionsp. 345
4.3.8 Level Sets of Quantum Control Landscapesp. 353
4.3.9 Topology of Quantum Control Landscapesp. 360
4.3.10 Pure-State Landscapep. 363
4.3.11 Further on Controllability of Quantum Systemsp. 368
4.3.12 Design of Quantum Systems for Simulationsp. 371
4.3.13 Unitary Operator Landscapep. 375
4.3.14 Global Search Algorithmsp. 383
4.3.15 Input-State Map and Its Extremalsp. 387
4.4 Open Quantum Systemsp. 392
4.4.1 Control of Open Quantum Systemsp. 392
4.4.2 Algorithm for Simulating Open Quantum Dynamicsp. 400
4.4.3 Dynamical Decoupling of Open Quantum Systemsp. 409
4.5 Discrete Control Example: Minimal Quantum Tic-Tac-Toep. 414
4.5.1 Minimalistic Quantization of Tic-Tac-Toep. 415
4.5.2 Quantum moves and winning conditionp. 416
4.5.3 Random gamesp. 418
4.5.4 Deterministic gamesp. 421
4.6 Biological Example: Electrical Muscular Stimulationp. 423
4.6.1 Introduction to EMS with Diamond Medi Liftp. 423
4.6.2 Neuro-Muscular EMS-Physiology with Diamond Medi Liftp. 426
4.6.3 Quantum EMS-Physics with Diamond Medi Liftp. 428
4.6.4 Quantum EMS-Control with Diamond Medi Liftp. 436
4.6.5 EMS-Treatment for the Back-Pain with Diamond Medi Liftp. 439
4.6.6 EMS Summaryp. 443
5 Control and Synchronization in Complex Systems and Human Crowdsp. 445
5.1 Arrays of Coupled Nonlinear Oscillatorsp. 445
5.1.1 Cluster Synchrony in Systems of Coupled Oscillatorsp. 446
5.1.2 Coordinated Motions on Euclidean Group SE(3) and Its Subgroupsp. 452
5.1.3 Reaction-Diffusion Systemsp. 461
5.1.4 Cellular Neural and Nonlinear Networksp. 465
5.1.5 Ricci Flow and Reaction-Diffusion Systemsp. 471
5.2 Introduction to Crowd Dynamicsp. 484
5.2.1 Crowd Configuration Manifold Mp. 485
5.2.2 Crowd Kinematicsp. 485
5.2.3 Crowd Ricci Flowp. 490
5.3 Group Dynamics with Psycho-Physical Conflict Behaviorsp. 492
5.3.1 A two-party crowd spatio-temporal dynamicsp. 496
5.3.2 Individual conflict-attractor dynamicsp. 499
5.3.3 Synchronized Langevin dynamicsp. 502
5.3.4 Wigner Function Description of Group Dynamicsp. 507
5.3.5 Topology of Lewinian group manifoldsp. 508
5.4 Crowd Dualities: Geometrical, Topological and Physicalp. 509
5.4.1 Geometrical Crowd-Duality Theoremp. 509
5.4.2 Topological Crowd-Duality Theoremp. 514
5.4.3 Physical and Global Duality of Crowd Dynamicsp. 516
5.5 Gauge-Field Dynamics of Large Human Crowdsp. 517
5.5.1 Basic topological gauge-field modelp. 519
5.5.2 Topological partition functionp. 521
5.5.3 Hodge decomposition and crowd gauge-path integralp. 523
5.5.4 Simple HGF modelp. 524
5.5.5 More realistic HGF modelp. 525
5.6 Crowd Turbulence and Nonlinear Crowd Wavesp. 528
5.6.1 Classical Approach to Crowd Turbulencep. 530
5.6.2 Quantum Approach to Crowd Turbulencep. 538
5.6.3 A Variety of Crowd Wavesp. 544
5.7 Topological Panic in Crowd Behaviorsp. 551
5.7.1 Geometrical Chaos in Crowd Dynamicsp. 552
5.7.2 Topological Braiding Chaos in Crowd Dynamicsp. 554
5.7.3 Hypothetical Simulations on Topological Quantum Computersp. 557
5.8 Nonlinear Adaptive Wave Models for Option Pricingp. 562
5.8.1 Adaptive wave model for general option pricingp. 564
5.8.2 Quantum wave model for low interest-rate optionsp. 568
5.8.3 A new stock-market research programp. 573
5.8.4 Conclusionp. 573
6 Appendixp. 575
6.1 Algebraic Preliminariesp. 575
6.1.1 Sets, Maps and Commutative Diagramsp. 575
6.1.2 Groupsp. 578
6.2 Manifolds and Lie Groupsp. 579
6.2.1 Calculus and Dynamics on Smooth Manifoldsp. 579
6.2.2 Lie Groups and their Lie algebrasp. 603
6.3 Lagrange Multipliers and Hessian Matrixp. 620
6.3.1 Method of Lagrange multipliersp. 620
6.3.2 Hessian matrix and second-derivative testp. 621
6.4 Path Integral Quantizationp. 622
6.4.1 Feynman's Amplitudep. 622
6.4.2 Lagrangian Actionp. 623
6.4.3 Partition Functionp. 624
6.5 Geometric Quantizationp. 625
6.5.1 Quantization of Hamiltonian Mechanicsp. 625
6.5.2 Quantization of Relativistic Hamiltonian Mechanicsp. 628
6.6 Crowd Behavior Dynamics in the Life Space Foamp. 633
6.6.1 Life Space Foamp. 633
6.6.2 Classical Versus Quantum Probabilityp. 637
6.6.3 A Three-Step Crowd Behavior Dynamicsp. 642
6.6.4 Method of Lines for the Crowd NLS-Equationsp. 645
6.7 Braids and Entropiesp. 646
6.7.1 Knots and Braidsp. 646
6.7.2 Exponents, Dimensions and Entropiesp. 658
Referencesp. 663
Indexp. 707