Skip to:Content
|
Bottom
Cover image for Handbook of hydrothermal technology : a technology for crystal growth and materials processing
Title:
Handbook of hydrothermal technology : a technology for crystal growth and materials processing
Personal Author:
Publication Information:
Park Ridge, N. J. : Noyes Publications, 2001
ISBN:
9780815514459

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010029209 QD921 B97 2001 Reference Book Handbook
Searching...

On Order

Summary

Summary

Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many moreùall products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume. The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including:ò Evolution of the technology from geology to widespread industrial use.ò Descriptions of equipment used in the process and how it works.ò Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues.ò Analysis of the direction of today's technology.In addition, readers get a close look at the hydrothermal synthesis of zeolites, fluorides, sulfides, tungstates, and molybdates, as well as native elements and simple oxides. Delving into the commercial production of various types, the authors clarify the effects of temperature, pressure, solvents, and various other chemical components on the hydrothermal processes.


Author Notes

Dr. K. Byrappa is a Professor at the University of Mysore in India
Dr. Masahiro Yoshimura is a Professor at the Tokyo Institute of Technology where he is Director of the Center for Materials Design, Materials and Structure Lab.


Table of Contents

1 Hydrothermal Technology--Principles and Applicationsp. 1
1.1 Introductionp. 1
1.2 Definitionp. 7
1.3 Mineralizersp. 9
1.4 Natural Hydrothermal Systemsp. 9
1.5 The Behavior of Volatiles and Other Incompatible Components Under Hydrothermal Conditionsp. 13
1.5.1 Waterp. 14
1.5.2 Fluorine and Chlorinep. 14
1.5.3 Boronp. 14
1.5.4 Phosphorusp. 15
1.5.5 Behavior of Alkalisp. 15
1.5.6 Crystallization Temperaturesp. 16
1.6 Submarine Hydrothermal Systemsp. 19
1.7 Hydrothermal Crystal Growth and Materials Processingp. 27
1.8 Statistics of Publications and Research in Hydrothermal Technologyp. 32
1.9 Hydrothermal Materials Processingp. 39
Referencesp. 43
2 History of Hydrothermal Technologyp. 53
2.1 Introductionp. 53
Referencesp. 78
3 Apparatusp. 82
3.1 Introductionp. 82
3.2 Selection of Autoclave and Autoclave Materialsp. 84
3.3 Linersp. 90
3.4 Temperature and Pressure Measurementsp. 97
3.5 Autoclaves and Autoclave Designsp. 101
3.5.1 Conventional Autoclave Designsp. 101
3.5.2 Novel Autoclavesp. 118
3.6 Safety and Maintenance of Autoclavesp. 149
Referencesp. 151
4 Physical Chemistry of Hydrothermal Growth of Crystalsp. 161
4.1 Introductionp. 161
4.1.1 Physico-Chemical and Hydrodynamic Principles of the Hydrothermal Growth of Crystalsp. 162
4.2 Basic Principles of Phase Formation Under Hydrothermal Conditionsp. 166
4.3 Solutions, Solubility and Kinetics of Crystallizationp. 170
4.4 Thermodynamic Principles of Solubilityp. 174
4.5 Kinetics of Crystallization Under Hydrothermal Conditionsp. 182
4.5.1 Experimental Investigations of Solubilityp. 186
Referencesp. 191
5 Hydrothermal Growth of Some Selected Crystalsp. 198
5.1 Quartzp. 198
5.2 Growth of High-Quality (and Dislocation Free) Quartz Crystalsp. 207
5.2.1 Growth Ratep. 208
5.2.2 Seed Effectp. 209
5.2.3 Nutrient Effectp. 211
5.2.4 Solubilityp. 213
5.2.5 Defects Observed in Synthetic a-quartz Single Crystalsp. 215
5.2.6 Processing of [alpha]-quartz for High Frequency Devicesp. 219
5.3 Berlinitep. 223
5.3.1 Crystal Chemical Significance of the Growth of AlPO[subscript 4] Crystalsp. 225
5.3.2 Solubility of Berlinitep. 226
5.3.3 Crystal Growthp. 231
5.3.4 Morphologyp. 236
5.3.5 Thermal Behaviorp. 243
5.3.6 Piezoelectric Properties of Berlinitep. 244
5.4 Gallium Phosphate, GaPO[subscript 4]p. 247
5.4.1 Crystal Growth of Gallium Phosphatep. 248
5.4.2 Morphologyp. 253
5.4.3 Dielectric Properties of Gallium Phosphatep. 254
5.5 Potassium Titanyl Phosphate (KTP)p. 256
5.5.1 Crystal Growth of KTPp. 259
5.5.2 Solubility of KTPp. 264
5.5.3 Morphologyp. 268
5.6 Potassium Titanyl Arsenatep. 269
5.7 Calcitep. 273
5.7.1 Crystal Growthp. 279
5.7.2 Hydrothermal Hot Pressing of Calcitep. 284
5.7.3 Growth of Related Carbonatesp. 285
5.8 Hydroxyapatite (HAp)p. 287
5.8.1 Crystal Structure of Apatitep. 291
5.8.2 Phase Equilibriap. 291
5.8.3 Crystal Growthp. 295
Referencesp. 300
6 Hydrothermal Synthesis and Growth of Zeolitesp. 315
6.1 Introductionp. 315
6.2 Mineralogy of Zeolitesp. 316
6.3 Crystal Chemistry of Zeolitesp. 318
6.4 Comparison Between Natural and Synthetic Zeolitesp. 327
6.5 Synthesis of Zeolitesp. 331
6.5.1 Molar Compositionp. 338
6.5.2 The Aging of Hydrogelp. 340
6.5.3 Water in Zeolite Synthesisp. 348
6.5.4 Temperature and Timep. 349
6.5.5 Alkalinity (pH)p. 350
6.5.6 Structure Directing and Composition Determining Species (Templating)p. 352
6.5.7 Nucleationp. 354
6.6 Crystal Growthp. 364
6.7 Aluminophosphate Zeolitesp. 377
6.8 Growth of Zeolite Thin Films and Crystals at Inorganic/Organic Interfaces (Preparation of Zeolite-Based Composites)p. 383
6.9 Applications of Zeolitesp. 391
6.10 Oxidative Catalysis on Zeolitesp. 398
Referencesp. 404
7 Hydrothermal Synthesis and Growth of Coordinated Complex Crystals (Part I)p. 415
7.1 Introductionp. 415
7.2 Crystal Chemical Backgroundp. 416
7.3 Rare Earth Silicatesp. 426
7.4 Phase Formation of Rare Earth Silicates (in Aqueous Solvents)p. 426
7.5 Crystal Chemical Significance of Phase Formationp. 436
7.5.1 Phase Formation in Surplus R[subscript 2]O[subscript 3]p. 451
7.5.2 Silicatesp. 451
7.5.3 Phase Formation in the Rare Earth Silicate Systems in the High Silica Regionp. 454
7.6 Degree of Silificationp. 457
7.7 Properties of Rare Earth Silicatesp. 459
7.8 Sodium Zirconium Silicatesp. 461
7.9 Growth of Selected Silicatesp. 467
7.9.1 Bismuth Silicate, Bi[subscript 12]SiO[subscript 20]p. 471
7.9.2 Beryl, Be[subscript 3]Al[subscript 2](SiO[subscript 3])[subscript 6]p. 475
7.9.3 Tourmalinep. 483
7.9.4 Nephelinep. 484
7.9.5 Zincosilicatesp. 486
7.10 Hydrothermal Growth of Lithium Silicatesp. 495
7.11 Hydrothermal Growth of Germanatesp. 497
7.11.1 Rare Earth Germanatesp. 499
7.11.2 Zirconium Germanatesp. 511
7.11.3 Zincogermanatesp. 515
7.12 Properties of Germanatesp. 516
7.13 Hydrothermal Growth of Phosphatesp. 519
7.13.1 Structural Chemistry of Rare Earth Phosphatesp. 522
7.13.2 Hydrothermal Growth of Rare Earth Phosphatesp. 523
7.13.3 Structure Types of Rare Earth Phosphatesp. 533
7.14 Hydrothermal Growth of Mixed Valent Metal Phosphatesp. 533
7.15 Properties of Rare Earth and Mixed Valent Metal Phosphatesp. 555
7.16 Hydrothermal Synthesis of Vanadatesp. 561
7.16.1 Growth of R = MVO[subscript 4] (R = Nd, Eu; M = Y, Gd)p. 562
7.16.2 Growth of Mixed Valent Vanadatesp. 570
7.17 Hydrothermal Synthesis of Boratesp. 572
7.17.1 Hydrothermal Growth of Selected Boratesp. 576
Referencesp. 597
8 Hydrothermal Synthesis and Crystal Growth of Fluorides, Sulfides, Tungstates, Molybdates, and Related Compoundsp. 618
8.1 Introductionp. 618
8.2 Fluoridesp. 618
8.2.1 Hydrothermal Synthesis of Rare Earth Fluoridesp. 619
8.2.2 Spectroscopic Properties of Rare Earth Fluoridesp. 623
8.3 Hydrothermal Synthesis of Transition Metal Fluoridesp. 626
8.4 Hydrothermal Synthesis of Fluorocarbonates and Fluorophosphatesp. 629
8.5 Oxyfluorinated Compoundsp. 631
8.6 Physical Properties of Transition Metal Fluorides and Fluorocarbonates/Fluorophosphates/oxyfluoridesp. 633
8.7 Hydrothermal Synthesis of Tungstatesp. 636
8.8 Hydrothermal Synthesis of Molybdatesp. 646
8.9 Hydrothermal Synthesis of Titanatesp. 650
8.9.1 Crystal Chemistry of Titanatesp. 651
8.9.2 Hydrothermal Synthesis of Selected Titanatesp. 655
8.10 Hydrothermal Growth of Lithium Metagallate Crystalsp. 663
8.11 Hydrothermal Synthesis of Sulphidesp. 665
8.11.1 Hydrothermal Synthesis of Sulphides of Univalent Metalsp. 666
8.11.2 Hydrothermal Synthesis of Divalent Metal Sulphidesp. 666
8.11.3 Hydrothermal Synthesis of Complex Sulphidesp. 672
8.11.4 Hydrothermal Synthesis of Chalcohalidesp. 672
8.12 Hydrothermal Synthesis of Selenides, Tellurides, Niobates and Tantalatesp. 674
8.13 Hydrothermal Synthesis of Arsenatesp. 680
Referencesp. 682
9 Hydrothermal Synthesis of Native Elements and Simple Oxidesp. 691
9.1 Introductionp. 691
9.2 Hydrothermal Synthesis of Native Elementsp. 691
9.3 Hydrothermal Synthesis of Hydroxidesp. 700
9.4 Hydrothermal Synthesis of Selected Oxidesp. 702
9.4.1 Cu[subscript 2]O (Cuprite)p. 702
9.4.2 BeO (Bromelite)p. 703
9.4.3 Zinc Oxidep. 703
9.4.4 Hydrothermal Growth of Corundump. 707
9.4.5 Hydrothermal Growth of Oxides of Ti, Zr and Hfp. 712
9.5 Hydrothermal Growth of Tellurium Dioxidep. 714
9.6 Hydrothermal Synthesis of TiO[subscript 2] and Related Oxide Powdersp. 717
9.7 Hydrothermal Synthesis of Mixed Oxidesp. 729
9.7.1 Hydrothermal Synthesis of Aluminatesp. 729
9.7.2 Hydrothermal Synthesis of Antimonites and Antimonatesp. 731
9.7.3 Hydrothermal Synthesis of Garnetsp. 734
9.7.4 Hydrothermal Synthesis of Ferritep. 736
9.7.5 Hydrothermal Synthesis of Complex Oxidesp. 739
Referencesp. 743
10 Hydrothermal Processing of Materialsp. 754
10.1 Introductionp. 754
10.2 Hydrothermal Preparation of Advanced Ceramicsp. 755
10.2.1 Hydrothermal Preparation of Simple Oxide Ceramicsp. 758
10.2.2 Hydrothermal Preparation of Perovskite Type of Mixed Oxide Ceramicsp. 762
10.2.3 Hydrothermal Processing of Bioceramicsp. 773
10.2.4 Hydrothermal Preparation of Thin Filmsp. 777
10.2.5 Hydrothermal Processing of Compositesp. 785
10.3 Hydrothermal Processing of Whisker Crystalsp. 793
10.4 Related Methods of Hydrothermal Processing of Materialsp. 801
10.4.1 Hydrothermal Hot Pressing (HHP) and Hot Isostatic Pressing (HIP)p. 802
10.4.2 Hydrothermal Reaction Sintering of Processing Materialsp. 804
10.4.3 Microwave Hydrothermal Processingp. 808
10.4.4 Hydrothermal Treatment/Recycling/Alterationp. 813
10.5 Hydrothermal Technology for the 21st Centuryp. 815
10.5.1 Thermodynamic Principles of Advanced Materials Processingp. 818
Referencesp. 829
Indexp. 846
Go to:Top of Page