Cover image for Micropropulsion for small spacecraft
Title:
Micropropulsion for small spacecraft
Series:
Progress in astronautics and aeronautics ; v. 187
Publication Information:
Reston, VA : American Institute of Aeronautics and Astronautics, 2000
ISBN:
9781563474484

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010115463 TL795.4 M52 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

Micropropulsion is an enabling technology for microspacecraft operations by making missions possible which otherwise could not be performed. For example, the formation and maintenance of platoons of microspacecraft will require a manoeuvering capability to counter orbital perturbations. Microspacecraft missions involving large spacecraft resupply, repair or surveillance will also require manoeuverability. The mission requirements for microspacecraft will be varied and in some cases a large range of capability might be required on the same spacecraft. Micropropulsion systems must be extremely versatile to address these requirements. It is clear that there is a need for micropropulsion systems from high thrust chemical engines to high specific impulse electric thrusters to fulfill specific missions just as for larger spacecraft. It is becoming increasingly evident that microspacecraft will require efficient propulsion systems to enable many of the missions currently being investigated. The systems constraints on mass, power, maximum voltage and volume with which microspacecraft will have to contend pose several challenges to the propulsion system designer.Micropropulsion concepts that address these limitations in unique and beneficial ways, should be of interest to the microscpacecraft community. Written by leading experts in the field, this new book shows the state-of-the-art in micropropulsion concepts and activities at the early stages in the development of this new and exciting research area.


Table of Contents

John H. Schilling and Ronald A. Spores and Gregory G. SpanjersJoyce Wong and Helen ReedJuergen MuellerAndrew D. KetsdeverAndrew D. Ketsdever and Dean C. Wadsworth and E. P. MuntzHideyuki Horisawa and Itsuro KimuraF. J. Souliez and S. G. Chianese and G. H. Dizac and M. M. MicciJuergen Mueller and Indrani Chakraborty and David Bame and William TangV. Khayms and M. Martinez-SanchezJeff Monheiser and Vlad Hruby and Charles Freeman and William Connolly and Bruce PoteColleen M. Marrese and James E. Polk and Kevin L. Jensen and Alec D. Gallimore and Capp A. Spindt and Richard L. Fink and W. Devereux PalmerJuergen Mueller and David Pyle and Indrani Chakraborty and Ronald Ruiz and William Tang and Colleen Marrese and Russell LawtonRodney L. Burton and Filip Rysanek and Erik A. Antonsen and Michael J. Wilson and Stewart S. BushmanPeter J. Turchi and Ioannis G. Mikellides and Pavlos G. Mikellides and Hani KamhawiN. Antropov and G. Diakonov and O. Lapayev and G. PopovRobert L. Bayt and Kenneth S. BreuerJuergen Mueller and Stephen Vargo and David Bame and Indrani Chakraborty and William TangColleen M. Marrese and Joseph J. Wang and Alec D. Gallimore and Keith D. GoodfellowJuergen Mueller
Prefacep. xvii
I. Surveys
Chapter 1 Micropropulsion Options for the TechSat21 Space-Based Radar Flightp. 3
Introductionp. 3
TechSat21 Designp. 5
Micropropulsion Optionsp. 8
Chemical Micropropulsionp. 10
Electromagnetic Micropropulsionp. 11
Electrostatic Micropropulsionp. 12
Electrodynamic Tetherp. 13
Electric Power Processingp. 14
Analysisp. 15
Conclusionsp. 20
Referencesp. 22
Chapter 2 University Micro-/Nanosatellite as a Micropropulsion Testbedp. 25
Introductionp. 25
University Satellites as Technology Testbedp. 27
Three Corner Satp. 28
Mission Descriptionp. 28
Spacecraft Descriptionp. 29
Operational Modesp. 31
Mission Requirementsp. 32
Drag Estimatesp. 33
Estimated [Delta]v Requiredp. 38
Potential Micropropulsion Systems for 3CSp. 39
System Requirements for the Free Molecule Micro-Resistojetp. 39
System Requirements for the Cold Gas Micronozzlep. 41
Conclusionsp. 42
Referencesp. 43
Chapter 3 Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologiesp. 45
Introductionp. 45
Recent Microspacecraft Developmentsp. 46
Background and Motivationp. 46
Recent Microspacecraft Design Trendsp. 47
Preliminary Set of Micropropulsion Requirements for Microspacecraftp. 51
System Integration Requirementsp. 53
Minimum Impulse Bit and Thrust Requirementsp. 54
Review of Chemical Propulsion Technologiesp. 56
Bipropellant Enginesp. 56
Monopropellant Thrusters: Hydrazinep. 61
Monopropellant Thrusters: HAN-Basedp. 64
Monopropellant Thrusters: Hydrogen Peroxidep. 66
Cold Gas Thrustersp. 68
Tripropellant and Other Warm Gas Thrustersp. 71
Solid Rocket Motorsp. 72
Hybrid Rocket Motorsp. 75
Review of Electric Propulsion Technologiesp. 77
Ion Enginesp. 77
Hall Thrustersp. 81
FEEPp. 84
Colloid Thrustersp. 94
Pulsed Plasma Thrusters (PPTs)p. 98
Resistojetsp. 105
Emerging Technologies: MEMS and MEMS-Hybrid Propulsion Conceptsp. 107
Case for MEMS Propulsion and Its Challengesp. 107
Brief History of MEMS Propulsionp. 110
MEMS-Based FEEP and Colloid Thruster Conceptsp. 111
Micro-Ion Engine Conceptsp. 112
MEMS-Based Microresistojet Conceptsp. 114
MEMS-Based Subliming Solid Microthruster Conceptp. 115
MEMS-Based Cold Gas Thruster Conceptp. 117
MEMS-Based Bipropellant Thruster Conceptp. 117
Digital Microthruster Array Conceptsp. 118
Evaluation of Existing Propulsion Technologies and Identification of Future Technology Needsp. 120
Evaluation of Existing Propulsion Technologiesp. 120
Identification of Technology Needsp. 123
Conclusionsp. 125
Referencesp. 126
Chapter 4 System Considerations and Design Options for Microspacecraft Propulsion Systemsp. 139
Nomenclaturep. 139
Introductionp. 140
Microspacecraftp. 140
Micropropulsionp. 141
Micropropulsion Scaling Issuesp. 142
Micronozzle Expansionsp. 142
Ion Formation at Small-Scale Lengthsp. 147
Micron-Scale Combustion and Mixingp. 149
Micro-Heat Transferp. 151
MEMS Device Considerationsp. 155
Micropropulsion System Considerationsp. 157
Micronozzle System Considerationsp. 157
Micro-Ion Thruster System Considerationsp. 158
Microchemical Thruster System Considerationsp. 160
Conclusionsp. 160
Referencesp. 161
II. Electrothermal Thrusters
Chapter 5 Predicted Performance and Systems Analysis of the Free Molecule Micro-Resistojetp. 167
Nomenclaturep. 167
Introductionp. 168
Theoryp. 170
Specific Impulse from Free Molecule Flowp. 170
Specific Impulse from Limit Equilibrium and Orifice Expansionp. 170
Calculationsp. 171
Resultsp. 172
Discussionp. 176
FMMR Estimated Thruster Performancep. 176
FMMR Scalingp. 176
Power Usage and Heat Transfer Considerationsp. 177
Systems Analysisp. 177
Mass of Stored Propellantp. 178
MEMS Valve Leakagep. 178
Propellant Storage Tank Massp. 178
Effective Specific Impulsep. 179
Effective Specific Impulse Comparisons of the FMMR with a Cold Gas Thrusterp. 180
Propellant Storage Volume Considerationsp. 181
Conclusionsp. 182
Referencesp. 182
Chapter 6 Study of Very Low-Power Arcjetsp. 185
Nomenclaturep. 185
Introductionp. 185
Experimentp. 187
Arcjet Thrusterp. 187
Propulsive Performance Testsp. 188
Thermal Efficiency and Gas Temperature Diagnosticsp. 188
Results and Discussionp. 189
Propulsive Performance of Very Low-Power Arcjet Thrustersp. 189
Diagnostics of Gas Temperature and Thermal Efficiency of Very Low-Power Arcjetsp. 193
Conclusionsp. 195
Referencesp. 196
Chapter 7 Low-Power Microwave Arcjet Testing: Plasma and Plume Diagnostics and Performance Evaluationp. 199
Nomenclaturep. 199
Introductionp. 199
Experimentp. 201
Propellant Testingp. 202
Electron Temperature Experimentp. 206
Doppler Shift Experimentp. 209
Thrust Measurementp. 211
Conclusionsp. 213
Referencesp. 213
Chapter 8 Vaporizing Liquid Microthruster Concept: Preliminary Results of Initial Feasibility Studiesp. 215
Introductionp. 215
Chip Design and Fabricationp. 216
Heater Characterizationp. 219
Description of Experimentp. 219
Resultsp. 220
Propellant Vaporization: Initial Studiesp. 222
Description of Experimentp. 222
Preliminary Resultsp. 225
Preliminary Conclusions and Future Workp. 228
Referencesp. 230
III. Electrostatic Thrusters
Chapter 9 Fifty-Watt Hall Thruster for Microsatellitesp. 233
Introductionp. 233
Hall Thruster Operationp. 233
Scaling Modelp. 234
Thruster Designp. 237
General Considerationsp. 237
Magnetic Circuit Designp. 238
Thermal Design/Material Selectionp. 240
Cathode Designp. 241
Final Designp. 242
Testing Facilityp. 242
Vacuum Tankp. 243
Thrust Balance, Calibration, and Data Aquisitionp. 243
Cathodep. 244
Flow Systemp. 244
Experimental Resultsp. 244
Alternative Scaling Scenarios: Universal Scalingp. 247
Conclusions and Recommendationsp. 252
Referencesp. 254
Chapter 10 Development and Testing of a Low-Power Hall Thruster Systemp. 255
Introductionp. 255
Thruster System Descriptionp. 256
200-W Hall Thrusterp. 256
1500-mA, Low-Power Hollow Cathodep. 260
400-W Power Processing Unitp. 262
Thruster Performancep. 264
Facilities and Experimental Apparatusp. 264
Constant-Discharge Voltage Performance Datap. 266
Thruster Comparison to Current Sate of the Artp. 268
Summaryp. 269
Referencesp. 269
Chapter 11 Performance of Field Emission Cathodes in Xenon Electric Propulsion System Environmentsp. 271
Nomenclaturep. 271
Introductionp. 273
FEA Cathode Performance Modelingp. 277
Field Electron Emission Modelp. 278
Tip Sputtering Modelp. 280
Sputter Yield Modelp. 283
Cathode Experimental Performance Evaluationsp. 284
Experimental Apparatusp. 286
Silicon FEA Cathodesp. 286
Molybdenum FEA Cathodesp. 289
Carbon-Film Cathodesp. 293
Discussionp. 295
Conclusionsp. 298
Referencesp. 299
Chapter 12 Electric Breakdown Characteristics of Silicon Dioxide Films for Use in Microfabricated Ion Engine Accelerator Gridsp. 303
Introductionp. 303
Microfabricated Grid Design Issuesp. 305
Previous Related Researchp. 306
Description of the Experimentp. 309
Substrate Breakdown Testsp. 312
Oxide Thickness Dependencep. 312
Temperature Dependencep. 314
Visual Post-Test Inspection of Test Samplesp. 316
Surface Breakdown Testsp. 323
Dependence on Gap Distancep. 323
Paschen Breakdown Considerationsp. 327
Influence of Surface Morphologyp. 328
Visual Post-Test Inspection of Test Samplesp. 331
Conclusionsp. 332
Referencesp. 334
IV. Electromagnetic Thrusters
Chapter 13 Pulsed Plasma Thruster Performance for Microspacecraft Propulsionp. 337
Nomenclaturep. 337
Introductionp. 338
PPT Performance for Micropropulsionp. 339
Electromagnetic Impulse Bitp. 340
Gasdynamic Impulse Bitp. 341
Defining Thruster Efficiencyp. 341
Efficiency Definitionsp. 342
Two-Stream Modelp. 346
Discussionp. 349
Referencesp. 352
Chapter 14 Pulsed Plasma Thrusters for Microsatellite Propulsion: Techniques for Optimizationp. 353
Nomenclaturep. 353
Introductionp. 354
Numerical Modelingp. 355
Idealized Modelp. 356
Confirmation of the Idealized Modelp. 358
Optimized Current Waveformsp. 361
Simulations in Coaxial Geometryp. 363
Optimizing the Specific Impulsep. 365
Conclusionsp. 366
Appendix Plasma Speed at the Magnetosonic Point in the Limit of a Low [beta] and a High Magnetic Reynolds Numberp. 366
Referencesp. 368
Chapter 15 Laboratory Investigation of Pulsed Plasma Thrusters with Gas Valvesp. 369
Introductionp. 369
Electromagnetic Pulsed Gas Valvesp. 369
Gas Propellant PPTsp. 372
Conclusionsp. 376
Referencesp. 377
V. Components
Chapter 16 Fabrication and Testing of Micron-Sized Cold-Gas Thrustersp. 381
Nomenclaturep. 381
Introductionp. 382
Fabricationp. 383
Numerical Simulationp. 386
Experimental Testingp. 386
Results and Discussionp. 387
Inlet Flowp. 387
Flowfield Analysis and Boundary Layer Calculationp. 388
Experimental Resultsp. 391
Endwall Boundary Layer and Plume Effectsp. 393
Conclusionsp. 396
Referencesp. 397
Chapter 17 Micro-Isolation Valve Concept: Initial Results of a Feasibility Studyp. 399
Introductionp. 399
Description of the Conceptp. 401
Conceptp. 401
Key Feasibility Issuesp. 402
Burst Pressure Testsp. 403
Test Chip Designp. 403
Burst Test Setup and Procedurep. 407
Resultsp. 408
Plug Melting Testsp. 413
Test Chip Designp. 413
Test Setup and Procedurep. 413
Conclusions and Future Workp. 420
Referencesp. 422
Chapter 18 Space-Charge--Limited Emission from Field Emission Cathodes for Electric Propulsion and Tether Applicationsp. 423
Nomenclaturep. 423
Introductionp. 424
One-Dimensional Cathode Sheath Modelp. 429
Three-Dimensional Particle Simulation Modelp. 434
Discussionp. 440
Conclusionsp. 441
Appendix A One-Dimensional Planar Sheath Modelp. 442
Appendix B One-Dimensional Spherical Sheath Modelp. 445
Referencesp. 446
Chapter 19 Review and Applicability Assessment of MEMS-Based Microvalve Technologies for Microspacecraft Propulsionp. 449
Introductionp. 449
Microspacecraft Valve Requirementsp. 452
Size and Weightp. 452
Power Consumptionp. 452
Voltagep. 452
Minimum Valve Cycle Timep. 453
Pressure Requirementsp. 453
Leakagep. 453
Liquid Propellant Compatibilityp. 454
Valve Seating Forcesp. 454
Filtrationp. 455
MEMS Microvalve Surveyp. 455
Thermopneumatic Valvesp. 455
Bimorph Valvesp. 457
Shape-Memory Alloy Valvesp. 459
Electrostatic Valvesp. 461
Piezoelectric Valvesp. 464
Electromagnetic Valvesp. 465
Check Valvesp. 467
Isolation Valvesp. 468
Pneumatic Valvesp. 470
Evaluation of State-of-the-Art MEMS Valves and Future Technology Needsp. 470
Evaluation of State-of-the-Art Technologyp. 470
Future Technology Needsp. 472
Conclusionsp. 473
Referencesp. 474
Author Indexp. 477