Cover image for Mechanical system dynamics
Title:
Mechanical system dynamics
Personal Author:
Series:
Lecture notes in applied and computational mechanics ; 40
Publication Information:
New York, NY : Springer, 2008
Physical Description:
xi, 575 p. : ill. ; 24 cm.
ISBN:
9783540794356

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010170089 QA402 P43 2005 Open Access Book Book
Searching...
Searching...
30000010197551 QA402 P43 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Mechanics as a fundamental science in Physics and in Engineering deals with interactions of forces resulting in motion and deformation of material bodies. Similar to other sciences Mechanics serves in the world of Physics and in that of Engineering in a di?erent way, in spite of many and increasing inter- pendencies. Machines and mechanisms are for physicists tools for cognition and research, for engineers they are the objectives of research, according to a famous statement of the Frankfurt physicist and biologist Friedrich Dessauer. Physicists apply machines to support their questions to Nature with the goal of new insights into our physical world. Engineers apply physical knowledge to support the realization process of their ideas and their intuition. Physics is an analytical Science searching for answers to questions concerning the world around us. Engineering is a synthetic Science, where the physical and ma- ematical fundamentals play the role of a kind of reinsurance with respect to a really functioning and e?ciently operating machine. Engineering is also an iterative Science resulting in typical long-time evolutions of their products, but also in terms of the relatively short-time developments of improving an existing product or in developing a new one. Every physical or mathematical Science has to face these properties by developing on their side new methods, new practice-proved algorithms up to new fundamentals adaptable to new technological developments. This is as a matter of fact also true for the ?eld of Mechanics.


Table of Contents

1 Introductionp. 1
2 Fundamentalsp. 5
2.1 Basic Conceptsp. 5
2.1.1 Massp. 5
2.1.2 Cut Principle and Forcesp. 6
2.1.3 Constraints and Generalized Coordinatesp. 8
2.1.4 Virtual Displacements and Velocitiesp. 11
2.2 Kinematicsp. 12
2.2.1 Coordinatesp. 12
2.2.2 Coordinate Transformationsp. 14
2.2.3 Velocities and Accelerationsp. 19
2.2.4 Transformation Chains and Recurrence Relationsp. 25
2.2.5 Kinematics of Systemsp. 29
2.2.6 Parameterized Coordinatesp. 31
2.2.7 Relative Contact Kinematicsp. 36
2.2.8 Influence of Elasticityp. 47
2.3 Momentum and Moment of Momentump. 53
2.3.1 Definitions and Axiomsp. 53
2.3.2 Momentump. 54
2.3.3 Moment of Momentump. 57
2.3.4 Transformationsp. 59
2.4 Energyp. 62
2.4.1 Introductionp. 62
2.4.2 Kinetic Energyp. 63
2.4.3 Potential Energyp. 66
2.5 On Contacts and Impactsp. 68
2.5.1 Phenomenap. 68
2.5.2 Impact Structurep. 68
2.5.3 Basic Lawsp. 71
2.5.4 Impact Modelsp. 74
2.6 Dampingp. 76
2.6.1 Phenomenap. 76
2.6.2 Linear Dampingp. 77
2.6.3 Nonlinear Dampingp. 81
3 Constraint Systemsp. 85
3.1 Constraints and Contactsp. 85
3.1.1 Bilateral Constraintsp. 85
3.1.2 Unilateral Constraintsp. 89
3.2 Principlesp. 100
3.2.1 Introductionp. 100
3.2.2 Principle of d'Alembert and Lagrangep. 100
3.2.3 Principle of Jourdain and Gaussp. 103
3.2.4 Lagrange's Equationsp. 105
3.2.5 Hamilton's Equationsp. 110
3.3 Multibody Systems with Bilateral Constraintsp. 113
3.3.1 General Commentsp. 113
3.3.2 Equations of Motion of Rigid Bodiesp. 115
3.3.3 Order(n) Recursive Algorithmsp. 119
3.3.4 Equations of Motion of Flexible Bodiesp. 124
3.3.5 Connections by Force Lawsp. 128
3.4 Multibody Systems with Unilateral Constraintsp. 131
3.4.1 The General Problemp. 131
3.4.2 Multibody Systems with Multiple Contactsp. 134
3.4.3 Friction Cone Linearizationp. 139
3.4.4 Numerical Aspectsp. 145
3.4.5 The Continual Benchmark: Woodpecker Toyp. 150
3.4.6 Some Empirical Conclusionsp. 155
3.5 Impact Systemsp. 158
3.5.1 General Featuresp. 158
3.5.2 Classical Approachp. 159
3.5.3 Moreau's Measure Differential Equationp. 170
3.5.4 Energy Considerationsp. 172
3.5.5 Verification of Impacts with Frictionp. 176
3.6 Modeling System Dynamicsp. 183
4 Dynamics of Hydraulic Systemsp. 187
4.1 Introductionp. 187
4.2 Modeling Hydraulic Componentsp. 190
4.2.1 Junctionsp. 190
4.2.2 Valvesp. 193
4.2.3 Hydraulic linesp. 198
4.3 Hydraulic Networksp. 201
4.3.1 Solutionsp. 202
4.3.2 Hydraulic Impactsp. 203
4.4 Practical Examplesp. 204
4.4.1 Hydraulic Safety Brake Systemp. 204
4.4.2 Power Transmission Hydraulicsp. 207
5 Power Transmissionp. 213
5.1 Automatic Transmissionsp. 214
5.1.1 Introductionp. 214
5.1.2 Drive Train Componentsp. 216
5.1.3 Drive Train Systemp. 227
5.1.4 Measurements and Verificationp. 229
5.1.5 Optimal Shift Controlp. 231
5.2 Ravigneaux Gear Systemp. 241
5.2.1 Toothingp. 242
5.2.2 Ravigneaux Planetary Gearp. 244
5.2.3 RingGearp. 246
5.2.4 Ring Gear Couplingp. 247
5.2.5 Phase Shift of Meshingsp. 249
5.2.6 Equations of Motionp. 250
5.2.7 Implementationp. 253
5.2.8 Simulation Resultsp. 254
5.3 Tractor Drive Train Systemp. 257
5.3.1 Introductionp. 257
5.3.2 Modelingp. 259
5.3.3 Numerical and Experimental Resultsp. 270
5.4 CVT Gear Systems - Generalitiesp. 275
5.4.1 Introductionp. 275
5.4.2 The Polygonial Frequencyp. 278
5.5 CVT - Rocker Pin Chains- Plane Modelp. 282
5.5.1 Mechanical Modelsp. 282
5.5.2 Mathematical Modelsp. 288
5.5.3 Some Resultsp. 294
5.6 CVT - Rocker Pin Chains-Spatial Modelp. 301
5.6.1 Introductionp. 301
5.6.2 Mechanical Modelsp. 302
5.6.3 Mathematical Modelsp. 307
5.6.4 Some Resultsp. 312
5.7 CVT - Push Belt Configurationp. 318
5.7.1 Introductionp. 318
5.7.2 Modelsp. 320
5.7.3 Some Resultsp. 327
6 Timing Equipmentp. 329
6.1 Timing Gear of a Large Diesel Enginep. 329
6.1.1 Modelingp. 331
6.1.2 Mathematical Modelsp. 335
6.1.3 Evaluation of the Simulationsp. 341
6.1.4 Resultsp. 342
6.2 Timing Gear of a 5-Cylinder Diesel Enginep. 346
6.2.1 Introductionp. 346
6.2.2 Structure and Model of the 5-Cylinder Timing Gearp. 346
6.2.3 Model of the Ancillary Componentsp. 352
6.2.4 Simulation Resultsp. 355
6.3 Timing Gear of a 10-Cylinder Diesel Enginep. 359
6.3.1 Introductionp. 359
6.3.2 Structure and Model of the 10-Cylinder Timing Gearp. 359
6.3.3 Simulation Resultsp. 362
6.4 Bush and Roller Chainsp. 365
6.4.1 Introductionp. 365
6.4.2 Mechanical and Mathematical Modelingp. 366
6.4.3 Resultsp. 391
6.5 Hydraulic Tensioner Dynamicsp. 395
6.5.1 Introductionp. 395
6.5.2 Piston/Cylinder Componentp. 396
6.5.3 Tube Modelsp. 397
6.5.4 Leakage Modelsp. 398
6.5.5 Check Valvesp. 402
6.5.6 Tensioner Systemp. 403
6.5.7 Experiments and Verificationp. 407
7 Roboticsp. 411
7.1 Introductionp. 411
7.2 Trajectory Planningp. 413
7.2.1 A Few Fundamentsp. 413
7.2.2 Parametric Path Planningp. 421
7.2.3 Forces at the Gripperp. 434
7.2.4 Influence of Elasticityp. 437
7.3 Dynamics and Control of Assembly Processes with Robotsp. 451
7.3.1 Introductionp. 451
7.3.2 Matingwith a Manipulatorp. 453
7.3.3 Combined Robot and Process Optimizationp. 476
8 Walkingp. 503
8.1 Motivation, Technology, Biologyp. 503
8.1.1 Motivationp. 503
8.1.2 Technologiesp. 505
8.1.3 Biologyp. 507
8.2 Walking Dynamicsp. 509
8.2.1 Preliminary Commentsp. 509
8.2.2 Modelingp. 510
8.2.3 Equations of Motionp. 523
8.3 Walking Trajectoriesp. 528
8.3.1 The Problemp. 528
8.3.2 Trajectory Generationp. 528
8.4 The Concept of JOHNNIEp. 536
8.4.1 Requirementsp. 536
8.4.2 Mechanical Modelsp. 536
8.4.3 Sensorsp. 537
8.4.4 Control Conceptp. 539
8.4.5 Some Resultsp. 542
Referencesp. 547
Indexp. 563