Cover image for Inertial navigation systems with geodetic applications
Title:
Inertial navigation systems with geodetic applications
Personal Author:
Publication Information:
Berlin : Walter de Gruyter, 2000
ISBN:
9783110159035

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010080127 QB283 J44 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

This book covers all aspects of inertial navigation systems (INS), including the sensor technology and the estimation of instrument errors, as well as their integration with the Global Positioning System (GPS) for geodetic applications. Complete mathematical derivations are given. Both stabilized and strapdown mechanizations are treated in detail. Derived algorithms to process sensor data and a comprehensive explanation of the error dynamics provide not only an analytical understanding but also a practical implementation of the concepts. A self-contained description of GPS, with emphasis on kinematic applications, is one of the highlights in this book.

The text is of interestto geodesists, including surveyors, mappers, and photogrammetrists; to engineers in aviation, navigation, guidance, transportation, and robotics; and to scientists involved in aerogeophysics and remote sensing.


Table of Contents

1 Coordinate Frames and Transformationsp. 1
1.1 Introductionp. 1
1.2 Coordinate Framesp. 3
1.2.1 Inertial Framep. 3
1.2.2 Earth-Centered-Earth-Fixed Framep. 6
1.2.3 Navigation Framep. 6
1.3 Transformationsp. 9
1.3.1 Direction Cosinesp. 10
1.3.2 Euler Anglesp. 11
1.3.3 Quaternionsp. 13
1.3.4 Axial Vectorsp. 18
1.3.5 Angular Ratesp. 19
1.4 Differential Equation of the Transformationp. 20
1.5 Specific Coordinate Transformationsp. 22
1.6 Fourier Transformsp. 27
2 Ordinary Differential Equationsp. 31
2.1 Introductionp. 31
2.2 Linear Differential Equationsp. 32
2.3 General Solution of Linear Differential Equationsp. 33
2.3.1 Homogeneous Solutionp. 35
2.3.1.1 An Examplep. 38
2.3.1.2 Fundamental Set of Solutionsp. 39
2.3.2 Particular Solutionp. 40
2.3.2.1 The Example, Continuedp. 42
2.4 Numerical Methodsp. 44
2.4.1 Runge-Kutta Methodsp. 45
2.4.2 Numerical Integration of Functionsp. 50
3 Inertial Measurement Unitsp. 51
3.1 Introductionp. 51
3.2 Gyroscopesp. 53
3.2.1 Mechanical Gyroscopesp. 54
3.2.1.1 SDF Gyrop. 56
3.2.1.1.1 Principal Error Termsp. 63
3.2.1.2 TDF Gyrop. 65
3.2.2 Optical Gyroscopesp. 70
3.2.2.1 Ring Laser Gyrop. 73
3.2.2.1.1 RLG Error Sourcesp. 77
3.2.2.2 Fiber-Optic Gyrop. 81
3.2.2.2.1 FOG Error Sourcesp. 85
3.3 Accelerometerp. 86
3.3.1 Accelerations in Non-Intertial Framesp. 89
3.3.2 Force-Rebalance Dynamicsp. 90
3.3.3 Pendulous Accelerometer Examplesp. 93
3.3.4 Vibrating Element Dynamicsp. 96
3.3.5 Error Sourcesp. 99
4 Intertial Navigation Systemp. 101
4.1 Introductionp. 101
4.2 Mechanizationsp. 104
4.2.1 Space-Stabilized Mechanizationp. 106
4.2.2 Local-Level Mechanizationp. 106
4.2.2.1 Schuler Tuningp. 107
4.2.2.2 Wander Azimuth Mechanizationp. 110
4.2.3 Strapdown Mechanizationp. 112
4.2.3.1 Numerical Determination of the Transformation Matrixp. 114
4.2.3.1.1 A Second-Order Algorithmp. 115
4.2.4.1.2 A Third-Order Algorithmp. 118
4.2.3.2 Specializationsp. 122
4.3 Navigation Equationsp. 123
4.3.1 Unified Approachp. 124
4.3.2 Navigation Equations in i-Framep. 126
4.3.3 Navigation Equations in e-Framep. 126
4.3.4 Navigation Equations in n-Framep. 126
4.3.5 Navigation Equations in w-Framep. 131
4.3.6 Numerical Integration of Navigation Equationsp. 134
5 System Error Dynamicsp. 139
5.1 Introductionp. 139
5.2 Simplified Analysisp. 140
5.3 Linearized Error Equationsp. 147
5.3.1 Error Dynamics Equations in i-Framep. 151
5.3.2 Error Dynamics Equations in e-Framep. 152
5.3.3 Error Dynamics Equations in n-Framep. 153
5.4 Approximate Analysisp. 157
5.4.1 Effects of Accelerometer and Gyro Errorsp. 159
5.4.2 Vertical Velocity and Position Error Effectsp. 161
5.4.3 Essential Error Modesp. 162
6 Stochastic Processes and Error Modelsp. 165
6.1 Introductionp. 165
6.2 Probability Theoryp. 165
6.2.1 Gaussian Distributionp. 170
6.3 Stochastic Processesp. 172
6.3.1 Covariance Functionsp. 173
6.3.2 Power Spectral densityp. 175
6.3.3 Ergodic Processesp. 176
6.4 White Noisep. 177
6.5 Stochastic Error Modelsp. 179
6.5.1 Random Constantp. 180
6.5.2 Random Walkp. 181
6.5.3 Gauss-Markov Modelp. 182
6.6 Gravity Modelsp. 186
6.6.1 Normal Gravity Fieldp. 186
6.6.2 Deterministic Gravity Modelsp. 190
6.6.3 Stochastic Gravity Modelsp. 192
6.7 Examples of IMU Error Processesp. 195
7 Linear Estimationp. 197
7.1 Introductionp. 197
7.2 Bayesian Estimationp. 199
7.2.1 Optimal Estimation Criteriap. 200
7.2.2 Estimation with Observationsp. 202
7.2.2.1 A Posteriori Density Functionp. 203
7.2.2.2 A Posteriori Estimate and Covariancep. 205
7.3 Discrete Kalman Filterp. 207
7.3.1 Observation Modelp. 209
7.3.2 Optimal State Vector Estimationp. 210
7.3.2.1 Predictionp. 212
7.3.2.2 Filteringp. 213
7.3.2.3 Smoothingp. 215
7.4 Discrete Linear Dynamics Modelp. 220
7.5 Modificationsp. 223
7.5.1 Augmented State Vectorp. 223
7.5.2 Closed-Loop Estimationp. 225
7.6 A Simple Examplep. 227
7.7 Continuous Kalman Filterp. 230
7.7.1 Covariance Functionp. 233
7.7.2 Solution to Matrix Ricatti Equationp. 235
7.7.2.1 Constant Coefficient Matricesp. 235
7.7.2.2 No System Process Noisep. 236
7.7.2.3 No Observationsp. 237
8 INS Initialization and Alignmentp. 238
8.1 Introductionp. 238
8.2 Coarse Alignmentp. 240
8.3 Fine Alignment and Calibrationp. 243
8.3.1 Acceleration Observationsp. 244
8.3.2 Velocity and Azimuth Observationsp. 246
8.3.3 Kinematic Alignmentp. 252
9 The Global Positioning System (GPS)p. 255
9.1 Introductionp. 255
9.2 Global Positioning Systemp. 259
9.2.1 Clocks and Timep. 259
9.2.2 GPS Signalsp. 261
9.2.3 GPS Receiverp. 263
9.3 GPS Observablesp. 266
9.4 GPS Errorsp. 269
9.5 Combinations of Observationsp. 273
9.5.1 Dual-Frequency Pseudorange and Phasep. 275
9.5.2 Single and Double Differencesp. 278
9.6 Kinematic Positioningp. 282
9.6.1 Dynamics Modelp. 284
9.6.2 Observation Equationsp. 287
9.6.3 Single-Receiver Casep. 288
9.6.4 Multiple-Receiver Casep. 292
10 Geodetic Applicationp. 295
10.1 Introductionp. 295
10.2 Inertial Survey Systemp. 297
10.2.1 Historical Developmentsp. 297
10.2.2 Estimation Methodsp. 300
10.2.2.1 Models and Observationsp. 300
10.2.2.2 Parameter Estimationp. 302
10.2.3 Final Adjustmentsp. 303
10.2.4 Typical Resultsp. 305
10.3 GPS/INS Integrationp. 306
10.3.1 Integration Modesp. 308
10.3.1.1 Decentralized Integrationp. 310
10.3.1.2 Centralized Integrationp. 314
10.3.2 Cycle Ambiguity Determinationp. 318
10.4 Moving-Base Gravimetryp. 320
10.4.1 Gravitation from Inertial Positioningp. 323
10.4.2 Gravitation from Accelerometryp. 327
10.4.2.1 Kalman Filter Approachesp. 330
10.4.2.2 Scalar Gravimetryp. 334
Referencesp. 336
Indexp. 343