Skip to:Content
|
Bottom
Cover image for Switching power supply design & optimization
Title:
Switching power supply design & optimization
Personal Author:
Publication Information:
New York : McGraw-Hill Professional, 2004
ISBN:
9780071434836

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010074508 TK7868.P6 M36 2005 Open Access Book Book
Searching...
Searching...
30000010078643 TK7868.P6 M36 2005 Unknown 1:CHECKING
Searching...

On Order

Summary

Summary

This is a rigorous tutorial on power supply design fundamentals. The author details cutting-edge thermal management techniques, grouping key design equations in a special reference section, and includes a concise design FAQ.


Author Notes

Sanjaya Maniktala is a Principal Engineer with National Semiconductor. He holds two patents in power supply technology and has written numerous articles on power supply design, appearing in such magazines as Power Electronics Technology, EDN, Electronic Engineering, and Planet Analog. He lives in Fremont, California.


Table of Contents

Prefacep. xi
Acknowledgmentsp. xv
About the Authorsp. xvii
Chapter 1. Overview of Switching Powerp. 1
1.1 Introductionp. 1
1.2 The Voltseconds Lawp. 3
1.3 Basic Waveform Analysisp. 4
1.4 The r and K of the Current Waveformp. 7
1.5 Basic Design Procedure for Inductorsp. 9
1.6 Calculating RMS Current for Capacitorsp. 10
1.7 Topologies and Worst-Case Capacitor Currentsp. 11
1.8 Worst-Case Input Voltage for a Power Supplyp. 13
1.9 Using Too High an Inductance (small r)p. 15
1.10 The Flat-Top Approximationp. 16
1.11 Tolerance of Set Output Voltagep. 20
1.12 Preferred Resistor Valuesp. 23
1.13 Optimum Divider Selectionp. 25
Chapter 2. DC-DC Converters and Their Configurationsp. 31
2.1 Introductionp. 31
2.2 What is Ground?p. 32
2.3 The N-switch and P-switchp. 33
2.4 The LSD Cellp. 34
2.5 Configurations of Switching Regulator Topologiesp. 36
2.6 Basic Types of Switcher ICsp. 38
2.7 Flyback/Buck-Boost/Boost ICs Comparedp. 40
2.8 Other Possible Applications of Buck and Buck-Boost ICsp. 42
2.9 Some Practical Casesp. 51
2.10 Differential Voltage Sensingp. 55
2.11 Some Topology Nuancesp. 56
2.12 Composite Topologiesp. 58
Chapter 3. Reference Equations and Graphs for Converter Designp. 61
3.1 The Defining Difference between the Topologiesp. 61
3.2 Definition of Current Ripple Ratiop. 61
3.3 Graphical Tools for Inductor Selectionp. 62
3.4 The Design Equations Tablep. 66
Chapter 4. Discontinuous Conduction Mode Equationsp. 69
4.1 Introductionp. 69
4.2 How DCM Equations Are Calculatedp. 71
4.3 The Duty Cycle Equationsp. 75
Chapter 5. Front-End of Off-Line Power Suppliesp. 77
5.1 Conventional Front-End Designp. 77
5.1.1 Input voltage shapep. 77
5.1.2 The input current shapep. 84
5.2 Front-End with PFCp. 87
5.2.1 Regulatory issuesp. 87
5.2.2 Boost PFCp. 89
5.2.3 Capacitor selectionp. 92
5.2.4 Synchronizing the PFC and PWM stagesp. 95
5.2.5 Synchronization over a wide input rangep. 98
5.2.6 Calculating the high- and low-frequency rms componentsp. 100
5.2.7 Sequencing, protection, and some related observationsp. 101
5.2.8 Core losses in the PFC chokep. 106
Chapter 6. Isolated Topologies for Off-line Applicationsp. 109
6.1 The Forward Converterp. 109
6.1.1 Introduction and overviewp. 109
6.2 The Flyback Topologyp. 114
6.2.1 Introductionp. 114
6.2.2 The integrated power switchp. 114
6.2.3 The equivalent buck-boost modelsp. 115
6.2.4 A worked examplep. 121
6.2.5 Dealing with multi-output convertersp. 121
6.2.6 The primary-side leakage termp. 123
6.2.7 The secondary-side leakage termp. 125
6.2.8 Optimization and analysisp. 129
6.2.9 Dissipation estimates and efficiencyp. 140
6.2.10 Practical flyback designs using 600-V switchesp. 144
6.2.11 Diode rating for higher V[subscript OR]p. 145
6.2.12 Pulse-skipping and required preloadp. 145
6.2.13 Overload protectionp. 149
Chapter 7. Concepts in Magneticsp. 153
7.1 Basic Magnetic Concepts and Definitions (MKS Units)p. 153
7.2 The Inductor Equationp. 154
7.3 The Voltage-Independent Equationp. 155
7.4 The Voltage-Dependent Equationp. 157
7.5 Units in Magneticsp. 161
7.6 The Magnetomotive Force (mmf) Equationp. 163
7.7 Effective Area and Effective Lengthp. 165
7.8 The Effect of the Air Gapp. 166
7.9 The Gap Factor zp. 168
7.10 The Origin and Significance of zp. 169
7.11 Relating B to Hp. 171
7.12 E-coresp. 171
7.13 Energy Storage Considerationsp. 172
First study: ampere-turns constant, (N = constant)p. 174
Second study: B constant, (N [proportional to] z)p. 174
Third study: L constant, (N [proportional to] z[superscript 1/2])p. 175
7.14 How an Air Gap Helpsp. 176
7.15 Understanding Lp. 178
7.16 Difference between an Inductor and (Flyback) Transformerp. 180
7.17 Transformersp. 181
7.18 Fringing Flux Correctionp. 185
7.19 Worked Examplep. 188
Chapter 8. Tapped-Inductor Topologiesp. 191
8.1 The Tapped-Inductor Buckp. 191
8.2 Other Tapped-Inductor Stages and Duty Cyclep. 196
Chapter 9. Selecting Inductors for DC-DC Convertersp. 199
9.1 Introductionp. 199
9.2 Specifying the Current Ripple Ratio rp. 202
9.3 Mapping the Inductorp. 203
9.4 Voltsecondsp. 204
9.5 Choosing r and Lp. 205
9.6 B in Terms of Currentp. 208
9.7 A Feel for Core Loss Optimization by Understanding Variationsp. 210
Varying the volume of the corep. 210
Varying the frequencyp. 212
9.8 A Walk-Through Examplep. 214
9.9 Choosing an Inductorp. 215
9.10 Evaluating the Inductor in Our Applicationp. 216
Chapter 10. Flyback Transformer Designp. 223
10.1 Design Equationsp. 223
10.2 Worked Example (Part 1)p. 226
10.3 Some Finer Points of Optimizationp. 230
10.4 Rule of Thumb for Quick Selection of Flyback Transformer Coresp. 231
10.5 Worked Example (Part 2)p. 232
10.6 Circular mils (cmils)p. 234
10.7 Current Carrying Capacity of Wiresp. 235
10.8 Skin Depthp. 237
10.9 A Feel for Wire Gaugesp. 242
10.10 Diameter of Coated Wirep. 244
10.11 SWG Comparisonp. 245
Chapter 11. Forward Converter Magnetics Designp. 249
11.1 Introductionp. 249
11.2 The Transformer and Choke Comparedp. 249
11.3 Introducing the Proximity Effectp. 253
11.4 More about Skin Depthp. 254
11.5 Dowell's Equationsp. 256
11.6 The Equivalent Foil Transformationp. 263
11.7 Some Useful Equations for Quick Selection of Forward Converter Coresp. 265
11.8 Stacking Wires and Bundlesp. 268
11.9 Core Loss Calculationsp. 269
Chapter 12. PCBs and Layoutp. 273
12.1 Introductionp. 273
12.2 Trace Analysisp. 273
12.3 Miscellaneous Points to Notep. 276
12.4 Routing the Feedback Tracep. 279
12.5 The Ground Planep. 280
12.6 Some Manufacturing Issuesp. 282
12.7 PCB Vendors and Gerber Filesp. 285
Chapter 13. Thermal Managementp. 287
13.1 Introductionp. 287
13.2 Thermal Measurements and Efficiency Estimatesp. 288
13.3 The Equations of Natural Convectionp. 290
13.4 Historical Definitionsp. 291
13.5 Available Equationsp. 292
13.6 Manipulating the Equationsp. 294
13.7 Comparing the Two Standard Equationsp. 295
13.8 h from Thermodynamic Theoryp. 296
13.9 Working with the Tables of the Standard Equationsp. 297
13.10 PCBs for Heatsinkingp. 301
13.11 Natural Convection at an Altitudep. 303
13.12 Forced Air Coolingp. 303
13.13 Radiative Heat Transferp. 305
13.14 Miscellaneous Issuesp. 306
Chapter 14. Stabilizing Current Mode Convertersp. 309
14.1 Backgroundp. 309
14.2 Why Slope Compensation?p. 312
14.3 Generalized Rule for Avoiding Subharmonic Instabilityp. 316
Chapter 15. Practical EMI Filter Designp. 319
15.1 The CISPR 22 Standardp. 319
15.2 The LISNp. 320
15.3 Fourier Seriesp. 321
15.4 The Trapezoidp. 322
15.5 Practical DM Filter Designp. 323
15.6 Practical CM Filter Designp. 326
Chapter 16. Things to Tryp. 331
16.1 Introductionp. 331
16.2 Synchronizing two 3844 ICsp. 331
16.3 A Self-Oscillating Low-Cost Standby/Auxiliary Power Supplyp. 332
16.4 An Adapter with Battery Charging Functionp. 334
16.5 Paralleling Bridge Rectifiersp. 335
16.6 Self-Contained Inrush Protection Circuitp. 335
16.7 Cheap Power Good Signalp. 336
16.8 An Overcurrent Protection Circuitp. 336
16.9 Another Overcurrent Protection Circuitp. 337
16.10 Adding Overtemperature Protection to the 384x Seriesp. 337
16.11 Turn-On Snubber for PFCp. 338
16.12 A Unique Active Inrush Protection Circuitp. 339
16.13 Floating Drive from a 384x Controllerp. 340
16.14 Floating Buck Topologyp. 340
16.15 Symmetrical Boost Topologyp. 341
16.16 A Slave Converterp. 342
16.17 A Boost Preregulator with a Regulated Auxiliary Outputp. 343
Chapter 17. Reliability, Testing, and Safety Issuesp. 345
17.1 Introductionp. 345
17.2 Reliability Definitionsp. 345
17.3 Chi-Square Distributionp. 347
17.4 Chargeable Failuresp. 349
17.5 Warranty Costsp. 350
17.6 Calculating Reliabilityp. 351
17.7 Testing and Qualifying Power Suppliesp. 352
HAST/HALT, HASS, and ESSp. 352
17.8 Safety Issuesp. 354
17.9 Calculating Working Voltagep. 357
17.10 Estimating Capacitor Lifep. 361
17.11 Safety Restrictions on the Total Y-Capacitancep. 369
17.12 Safety and the 5-cent Zenerp. 370
Appendix. Components and FAQp. 373
Referencesp. 387
Indexp. 389
Go to:Top of Page