Skip to:Content
|
Bottom
Cover image for Differential forms in electromagnetics
Title:
Differential forms in electromagnetics
Personal Author:
Series:
IEEE Press series on electromagnetic wave theory
Publication Information:
Hoboken, N.J. : Wiley-Interscience, 2004
ISBN:
9780471648017

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010070233 QC60.4.M37 L56 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

An introduction to multivectors, dyadics, and differential forms for electrical engineers

While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms.

In Differential Forms in Electromagnetics , Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media.

Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials.


Author Notes

Ismo V. Lindell is a professor of electromagnetic theory at the Helsinki University of Technology Department of Electrical and Communication Engineering.


Table of Contents

Prefacep. xi
1 Multivectorsp. 1
1.1 The Grassmann algebrap. 1
1.2 Vectors and dual vectorsp. 5
1.2.1 Basic definitionsp. 5
1.2.2 Duality productp. 6
1.2.3 Dyadicsp. 7
1.3 Bivectorsp. 9
1.3.1 Wedge productp. 9
1.3.2 Basis bivectorsp. 10
1.3.3 Duality productp. 12
1.3.4 Incomplete duality productp. 14
1.3.5 Bivector dyadicsp. 15
1.4 Multivectorsp. 17
1.4.1 Trivectorsp. 17
1.4.2 Basis trivectorsp. 18
1.4.3 Trivector identitiesp. 19
1.4.4 p-vectorsp. 21
1.4.5 Incomplete duality productp. 22
1.4.6 Basis multivectorsp. 23
1.4.7 Generalized bac cab rulep. 25
1.5 Geometric interpretationp. 30
1.5.1 Vectors and bivectorsp. 30
1.5.2 Trivectorsp. 31
1.5.3 Dual vectorsp. 32
1.5.4 Dual bivectors and trivectorsp. 32
2 Dyadic Algebrap. 35
2.1 Products of dyadicsp. 35
2.1.1 Basic notationp. 35
2.1.2 Duality productp. 37
2.1.3 Double-duality productp. 37
2.1.4 Double-wedge productp. 38
2.1.5 Double-wedge squarep. 39
2.1.6 Double-wedge cubep. 41
2.1.7 Higher double-wedge powersp. 44
2.1.8 Double-incomplete duality productp. 44
2.2 Dyadic identitiesp. 46
2.2.1 Gibbs'identity in three dimensionsp. 48
2.2.2 Gibbs'identity in n dimensionsp. 49
2.2.3 Constructing identitiesp. 50
2.3 Eigenproblemsp. 55
2.3.1 Left and right eigenvectorsp. 55
2.3.2 Eigenvaluesp. 56
2.3.3 Eigenvectorsp. 57
2.4 Inverse dyadicp. 59
2.4.1 Reciprocal basisp. 59
2.4.2 The inverse dyadicp. 60
2.4.3 Inverse in three dimensionsp. 62
2.5 Metric dyadicsp. 68
2.5.1 Dot productp. 68
2.5.2 Metric dyadicsp. 68
2.5.3 Properties of the dot productp. 69
2.5.4 Metric in multivector spacesp. 70
2.6 Hodge dyadicsp. 73
2.6.1 Complementary spacesp. 73
2.6.2 Hodge dyadicsp. 74
2.6.3 Three-dimensional Euclidean Hodge dyadicsp. 75
2.6.4 Two-dimensional Euclidean Hodge dyadicp. 78
2.6.5 Four-dimensional Minkowskian Hodge dyadicsp. 79
3 Differential Formsp. 83
3.1 Differentiationp. 83
3.1.1 Three-dimensional spacep. 83
3.1.2 Four-dimensional spacep. 86
3.1.3 Spatial and temporal componentsp. 89
3.2 Differentiation theoremsp. 91
3.2.1 Poincare's lemma and de Rham's theoremp. 91
3.2.2 Helmholtz decompositionp. 92
3.3 Integrationp. 94
3.3.1 Manifoldsp. 94
3.3.2 Stokes'theoremp. 96
3.3.3 Euclidean simplexesp. 97
3.4 Affine transformationsp. 99
3.4.1 Transformation of differential formsp. 99
3.4.2 Three-dimensional rotationp. 101
3.4.3 Four-dimensional rotationp. 102
4 Electromagnetic Fields and Sourcesp. 105
4.1 Basic electromagnetic quantitiesp. 105
4.2 Maxwell equations in three dimensionsp. 107
4.2.1 Maxwell-Faraday equationsp. 107
4.2.2 Maxwell-Ampere equationsp. 109
4.2.3 Time-harmonic fields and sourcesp. 109
4.3 Maxwell equations in four dimensionsp. 110
4.3.1 The force fieldp. 110
4.3.2 The source fieldp. 112
4.3.3 Deschamps graphsp. 112
4.3.4 Medium equationp. 113
4.3.5 Magnetic sourcesp. 113
4.4 Transformationsp. 114
4.4.1 Coordinate transformationsp. 114
4.4.2 Affine transformationp. 116
4.5 Super formsp. 118
4.5.1 Maxwell equationsp. 118
4.5.2 Medium equationsp. 119
4.5.3 Time-harmonic sourcesp. 120
5 Medium, Boundary, and Power Conditionsp. 123
5.1 Medium conditionsp. 123
5.1.1 Modified medium dyadicsp. 124
5.1.2 Bi-anisotropic mediump. 124
5.1.3 Different representationsp. 125
5.1.4 Isotropic mediump. 127
5.1.5 Bi-isotropic mediump. 129
5.1.6 Uniaxial mediump. 130
5.1.7 Q-mediump. 131
5.1.8 Generalized Q-mediump. 135
5.2 Conditions on boundaries and interfacesp. 138
5.2.1 Combining source-field systemsp. 138
5.2.2 Interface conditionsp. 141
5.2.3 Boundary conditionsp. 142
5.2.4 Huygens' principlep. 143
5.3 Power conditionsp. 145
5.3.1 Three-dimensional formalismp. 145
5.3.2 Four-dimensional formalismp. 147
5.3.3 Complex power relationsp. 148
5.3.4 Ideal boundary conditionsp. 149
5.4 The Lorentz force lawp. 151
5.4.1 Three-dimensional forcep. 152
5.4.2 Force-energy in four dimensionsp. 154
5.5 Stress dyadicp. 155
5.5.1 Stress dyadic in four dimensionsp. 155
5.5.2 Expansion in three dimensionsp. 157
5.5.3 Medium conditionp. 158
5.5.4 Complex force and stressp. 160
6 Theorems and Transformationsp. 163
6.1 Duality transformationp. 163
6.1.1 Dual substitutionp. 164
6.1.2 General dualityp. 165
6.1.3 Simple dualityp. 169
6.1.4 Duality rotationp. 170
6.2 Reciprocityp. 172
6.2.1 Lorentz reciprocityp. 172
6.2.2 Medium conditionsp. 172
6.3 Equivalence of sourcesp. 174
6.3.1 Nonradiating sourcesp. 175
6.3.2 Equivalent sourcesp. 176
7 Electromagnetic Wavesp. 181
7.1 Wave equation for potentialsp. 181
7.1.1 Electric four-potentialp. 182
7.1.2 Magnetic four-potentialp. 183
7.1.3 Anisotropic mediump. 183
7.1.4 Special anisotropic mediump. 185
7.1.5 Three-dimensional equationsp. 186
7.1.6 Equations for field two-formsp. 187
7.2 Wave equation for fieldsp. 188
7.2.1 Three-dimensional field equationsp. 188
7.2.2 Four-dimensional field equationsp. 189
7.2.3 Q-mediump. 191
7.2.4 Generalized Q-mediump. 193
7.3 Plane wavesp. 195
7.3.1 Wave equationsp. 195
7.3.2 Q-mediump. 197
7.3.3 Generalized Q-mediump. 199
7.4 TE and TM polarized wavesp. 201
7.4.1 Plane-wave equationsp. 202
7.4.2 TE and TM polarizationsp. 203
7.4.3 Medium conditionsp. 203
7.5 Green functionsp. 206
7.5.1 Green function as a mappingp. 207
7.5.2 Three-dimensional representationp. 207
7.5.3 Four-dimensional representationp. 209
Referencesp. 213
Appendix A Multivector and Dyadic Identitiesp. 219
Appendix B Solutions to Selected Problemsp. 229
Indexp. 249
About the Authorp. 255
Go to:Top of Page