Cover image for Process oriented analysis : design and optimization of industrial production systems
Title:
Process oriented analysis : design and optimization of industrial production systems
Personal Author:
Publication Information:
Boca Raton, FL : CRC/Taylor & Francis, 2007
Physical Description:
xiv, 520 p. : ill. ; 25 cm.
ISBN:
9780849374944

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010169589 TS176 M49 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

In modern manufacturing, it is not simply the equipment that is increasingly complex but rather the entire business system in which a company operates. Convoluted supply chains, complicated resource flows, advanced information systems: all must be taken into account when designing or reengineering a manufacturing system. Introducing a powerful yet easy-to-follow method, Process Oriented Analysis: Design and Optimization of Industrial Production Systems offers clear and practical guidance on applying this proven analytical technique to any type of manufacturing operation.

Linking abstract theoretical concepts to real-world implementation, this book outlines the principles of Process Oriented Analysis (POA) and demonstrates the application of these concepts using actual case studies. The authors first present the diagrams and analytical tools used in POA to represent both the static structure and dynamic behavior of the system. They then demonstrate how to build a simulation model by translating the diagram components into usable source code. Software for generating these types of diagrams is available for download from the Internet, along with a thorough tutorial that includes questions and interactive case studies.

Taking a consistent approach that anyone in the organization can use and understand, Process Oriented Analysis is the perfect resource for planning, designing, debugging, and optimizing modern production systems.


Table of Contents

I Introduction to the Process Oriented Analysisp. 1
I1 Process Oriented Analysisp. 3
1.1 Introductionp. 4
1.2 Concept of POAp. 6
1.3 Static Analysisp. 8
1.3.1 System Specificationp. 8
1.3.2 Economical Analysisp. 9
1.3.3 Ecological Analysisp. 10
1.4 Dynamic Analysisp. 11
1.4.1 System Behaviorp. 11
1.4.2 Process Simulationp. 12
1.4.3 Machine and Process Controlp. 13
1.5 Setup of a Production Analysisp. 14
1.5.1 The Real World in a Modelp. 14
1.5.2 Model Definitionsp. 15
1.5.3 Capture a Systemp. 16
1.5.4 Procedure of Setting Up a Modelp. 16
1.6 Projects Using POA Modelsp. 18
1.7 Organization of the Bookp. 20
I2 Delimitation of Process Oriented Analysisp. 23
2.1 Introductionp. 24
2.2 Upper and Lower Casep. 25
2.3 Structured Analysisp. 26
2.3.1 Method Descriptionp. 26
2.3.2 Delimitation POA to SAp. 27
2.4 Unified Modeling Language UMLp. 29
2.4.1 Method Descriptionp. 29
2.4.2 Delimitation POA to UMLp. 30
2.5 Computer Supportp. 32
2.5.1 Case Toolsp. 32
2.5.2 Programmingp. 34
S Static Analysis Toolsp. 35
S1 Flow Diagramp. 37
1.1 Introductionp. 38
1.2 Flow Diagram: Why?p. 39
1.2.1 Purposep. 39
1.2.2 Applicationp. 40
1.2.3 Delimitationp. 41
1.3 Flow Diagram Elementsp. 44
1.3.1 Diagramp. 44
1.3.2 Processp. 45
1.3.3 Flowp. 47
1.3.4 Classification of Flowsp. 52
1.3.5 Rules for Processes and Flowsp. 53
1.4 System Boundaryp. 55
1.4.1 External Entityp. 55
1.4.2 Context Diagramp. 56
1.4.3 Rules for External Entity and Context Diagramp. 57
1.5 System Structuring in the Hierarchyp. 59
1.5.1 System Structuringp. 59
1.5.2 Numbering of Processes and Diagramsp. 59
1.5.3 Balancing Parent Process and Child Diagramp. 60
1.5.4 Principle of Structuringp. 61
1.5.5 Hierarchy of Flows by Split and Mergep. 63
1.5.6 Rules for Flow Connections and Hierarchical Structurep. 66
1.6 Element Specification and Data Dictionaryp. 68
1.6.1 Element Specificationp. 68
1.6.2 Data Dictionaryp. 70
1.7 Setup of a Model and Recommendationsp. 73
1.7.1 Components of a Modelp. 73
1.7.2 Modeling by Hand or Case Toolp. 74
1.7.3 Recommendations and Guidelines for Expedient Procedurep. 75
1.7.4 Recommendations and Guidelines for Easy Legible Diagramsp. 76
1.7.5 Recommendations for System Optimizationsp. 78
1.8 Application Example: Gas Stationp. 81
1.9 Apply Your Knowledgep. 91
S2 Value Flow Diagramp. 97
2.1 Introductionp. 98
2.2 Value Flow Diagram: Why?p. 99
2.2.1 Purposep. 99
2.2.2 Applicationp. 100
2.2.3 Delimitationp. 101
2.2.4 Definitionsp. 102
2.3 VFD Elementsp. 106
2.3.1 From Flow Diagram to VFDp. 106
2.3.2 Processp. 106
2.3.3 External Entityp. 106
2.3.4 Value Flowp. 106
2.4 Flow Types and Flow Categoriesp. 110
2.4.1 Classification of Flowsp. 110
2.4.2 Flow Category: Resource and Information Flowp. 114
2.4.3 Flow Category: Product Flowp. 114
2.4.4 Flow Category: Fictitious Value Flowp. 117
2.4.5 Flow Category: Money Flowp. 120
2.5 Calculation of the Valuep. 123
2.5.1 Procedure of Value Calculationp. 123
2.5.2 Principles of the Value Calculationp. 123
2.5.3 Value Calculation in the Hierarchyp. 124
2.5.4 Flow Equationp. 127
2.5.5 Process Balancep. 130
2.6 Element Specification and Calculationp. 132
2.6.1 Declaration of Parametersp. 132
2.6.2 Flow Specificationp. 133
2.6.3 Process Specificationp. 133
2.6.4 Calculation Based on Equations with Parametersp. 136
2.7 Special Examplesp. 141
2.7.1 Exchange of Value with Outside Worldp. 141
2.7.2 Example of Waste Calculation in a Companyp. 142
2.7.3 Notice of Profit and Lossp. 144
2.7.4 Investment Analysisp. 146
2.7.5 Intangible Assets: Labelsp. 148
2.8 Application Example: Gas Stationp. 149
2.9 Apply Your Knowledgep. 159
S3 Resource Flow Diagramp. 165
3.1 Introductionp. 166
3.2 Resource Flow Diagram: Why?p. 167
3.2.1 Purposep. 167
3.2.2 Applicationp. 167
3.2.3 Delimitationp. 168
3.2.4 Definitionsp. 170
3.2.5 Concept of Energy and Exergyp. 173
3.3 RFD Elementsp. 175
3.3.1 From Flow Diagram to RFDp. 175
3.3.2 Processp. 176
3.3.3 Resource Flowp. 176
3.3.4 External Entityp. 177
3.4 Flow Types and Flow Categoriesp. 178
3.4.1 Flow Classificationp. 178
3.4.2 Flow Categoryp. 178
3.4.3 Flow Typep. 179
3.5 Calculation in the Flow and Process Specificationp. 181
3.5.1 Calculation Procedurep. 181
3.5.2 Parameter Declaration and Assessmentp. 182
3.5.3 Flow Specification in Generalp. 183
3.5.4 Process Specification in Generalp. 184
3.6 Mass Analysis in the RFDp. 186
3.6.1 Mass Balancep. 186
3.6.2 General Flow Calculationp. 188
3.7 Energy Analysis in the RFDp. 193
3.7.1 Total Energy of Resource Flowsp. 193
3.7.2 Energy Balancep. 195
3.7.3 Process Value: Energetic Efficiencyp. 197
3.8 Exergy Analysisp. 199
3.8.1 Exergy of Resource Flowsp. 199
3.8.2 Exergy Balancep. 200
3.8.3 Example: Exergy Analysis of a Draw Winding Machinep. 201
3.8.4 Process Value: Exergetic Efficiencyp. 206
3.9 Embodied Energy Analysisp. 207
3.9.1 Embodied Energy Calculationp. 207
3.9.2 Process Value: Embodied Energy Addedp. 208
3.9.3 Example: Embodied Energy Calculation of a Textile Yarnp. 210
3.10 Application Example: Gas Stationp. 213
3.11 Apply Your Knowledgep. 219
D Dynamic Analysis Toolsp. 225
D1 State Chartp. 227
1.1 Introductionp. 228
1.2 State Chart: Why?p. 229
1.2.1 Purposep. 229
1.2.2 Applicationp. 229
1.2.3 Delimitationp. 231
1.3 State Chart Elementsp. 234
1.3.1 Diagramp. 234
1.3.2 Statep. 234
1.3.3 Transitionp. 235
1.3.4 Rules and Examples for State Chartsp. 240
1.4 Model Structurep. 244
1.4.1 State Structuring in the Hierarchyp. 244
1.4.2 Element Specificationp. 248
1.4.3 Data Dictionaryp. 250
1.5 From Flow Diagram to State Chartp. 253
1.5.1 Hierarchy of Flow Diagram and State Chartp. 253
1.5.2 Transition from Flow Diagram to State Chartp. 255
1.5.3 When to Begin with the State Chart in the Hierarchyp. 258
1.6 Recommendation and Guidelinesp. 260
1.6.1 Recommendation for State Chartsp. 260
1.6.2 Bottom-Up Approachp. 262
1.6.3 Components of the Modelp. 264
1.7 Application Example: Gas Stationp. 266
1.8 Apply Your Knowledgep. 271
D2 Simulation Modelp. 277
2.1 Introductionp. 278
2.2 Simulation Model: Why?p. 279
2.2.1 Purposep. 279
2.2.2 Applicationp. 279
2.2.3 Delimitationp. 281
2.2.4 Definitionsp. 282
2.3 From Flow Diagram to Codep. 285
2.3.1 Simulation Theoryp. 285
2.3.2 Step-by-Step Procedurep. 286
2.3.3 Step 1: Purpose and Goal of System and System Boundariesp. 287
2.3.4 Step 2: Specify System by the Flow Diagramp. 287
2.3.5 Step 3: Specify Behavior of Processes in Timep. 289
2.3.6 Step 4: Program Requirements and User Interfacep. 292
2.3.7 Step 5: Write each Program Module in Codep. 295
2.3.8 Step 6: Code and Setup of the Simulation Modelp. 303
2.3.9 Step 7: Check and Evaluate System Behaviorp. 305
2.4 Application of Commercial Simulation Packagesp. 307
2.4.1 Connection POA and Commercial Simulation Packagesp. 307
2.4.2 Evaluation of Commercial Simulation Packagesp. 308
2.4.3 Example with Simulation Package: Gas Stationp. 310
2.5 Application Example: Gas Stationp. 314
2.5.1 Static Modelp. 314
2.5.2 Dynamic Modelp. 315
2.5.3 User Interfacep. 317
2.5.4 Coding of the Simulation Modelp. 318
2.6 Apply Your Knowledgep. 324
D3 Real-Time Controlp. 329
3.1 Introductionp. 330
3.2 POA for Real-Time Control: Why?p. 331
3.2.1 Purposep. 331
3.2.2 Applicationp. 332
3.2.3 Delimitationp. 333
3.2.4 Definitionsp. 334
3.2.5 History of Manufacturing Automationp. 335
3.3 Machinery States of Manufacturing Processesp. 339
3.3.1 Operating and Non-Operating Statesp. 339
3.3.2 Monitoring of System Statesp. 341
3.3.3 Failure Handlingp. 344
3.4 System View in the State Domainp. 346
3.4.1 Purpose of the State Domainp. 346
3.4.2 System with Discrete Parametersp. 347
3.4.3 System with Continuous and Discrete Parametersp. 349
3.4.4 System with Continuous Parametersp. 352
3.4.5 Consideration for Model Hierarchy and State Domainp. 354
3.4.6 Rules for State Domain, State Map, and System Statesp. 358
3.5 Program Design and Codingp. 359
3.5.1 Step-by-Step Procedure for Real-Time Codingp. 359
3.5.2 System Analysis for Real-Time Controlp. 361
3.5.3 Program Design and Test Simulationp. 368
3.5.4 Implementation of Real-Time Controlp. 374
3.6 Programmable Logic Control of a Fan Heaterp. 375
3.6.1 Structure of the Systemp. 375
3.6.2 System Behaviorp. 376
3.6.3 Risk Analysisp. 378
3.6.4 Programming Languages for PLCp. 379
3.7 Application Example: Gas Pumpp. 381
3.7.1 Flow Diagram and Specificationsp. 381
3.7.2 State Chartsp. 383
3.7.3 User Interface and Program Codep. 384
3.8 Apply Your Knowledgep. 387
C Case Studiesp. 395
C1 System Analysis of a Service Enterprisep. 397
1.1 Getting to Know the Operation of a Barp. 398
1.2 Setting up the Modelp. 399
1.2.1 Specify the Investigated Systemp. 399
1.2.2 Detailing of the Diagramsp. 402
1.3 Evaluation Report and Benefits of the Methodp. 407
C2 Economical Analysis of a Weaving Mill with Integrated Finishingp. 409
2.1 Model of a Production Plantp. 410
2.2 Company and Productp. 410
2.3 Procedure for Setting up a Modelp. 412
2.4 Value Flow Diagram of WeaveFinep. 416
2.4.1 Context Diagramp. 416
2.4.2 VFD Level 1: "Produce Fabric"p. 417
2.4.3 VFD Lower Levelsp. 424
2.4.4 VFD "Finish + Schedule Article"p. 427
2.4.5 Fictitious Value Flow to Pass on Costsp. 428
2.5 Evaluation Report and Benefits of the Methodp. 430
C3 Exergy Analysis of an Industrial Bakeryp. 433
3.1 Energy Analysis of the Croissant Linep. 434
3.2 Resource Flow Diagrams of the Croissant Linep. 435
3.2.1 Context Diagramp. 435
3.2.2 RFD Production Levelp. 436
3.2.3 Mass Calculation of Product Flowsp. 438
3.2.4 Energy Calculation of Resource Flowsp. 440
3.2.5 RFD Second Level of Detail and Production Layoutp. 440
3.3 Exergy Balance of the Baking Processp. 444
3.3.1 Purpose of the Exergy Balancep. 444
3.3.2 Exergy Calculation of Material Flowsp. 445
3.3.3 Exergy Calculation of Energy Flowsp. 447
3.3.4 Exergetic Efficiency Calculationp. 448
3.4 Benefits of the Methodp. 448
C4 System Control for the Demagnetizing of TV Display Tubesp. 451
4.1 Demagnetizing of TV Display Tubesp. 452
4.2 New Conception of a Demagnetizing Process Linep. 453
4.3 System Architecture of the New Production Linep. 455
4.4 Process Control for Degauss Production Linep. 458
4.5 Benefits of the Methodp. 461
C5 Operational Concept for an Automated Plantp. 463
5.1 New Production Setupp. 464
5.2 What is Texturizing?p. 465
5.2.1 Set System Boundariesp. 465
5.2.2 Specify System and its Structure by Flow Diagramsp. 466
5.3 Dynamic Model of the Texturizing Plantp. 467
5.3.1 Specify Behavior of Processes in Timep. 467
5.3.2 State Specification and State Listp. 468
5.4 Simulation Program for the Texturizing Plantp. 469
5.4.1 Specify Requirements of Program and Design User Interfacep. 469
5.4.2 Evaluations Required of Simulationp. 470
5.4.3 Parametersp. 470
5.4.4 Options for Machine Designp. 472
5.4.5 User Interfacep. 472
5.4.6 Write each Module in Program Codep. 475
5.4.7 Evaluationp. 476
5.4.8 Code Examplep. 479
5.5 Results and Benefits of the Methodp. 480
5.5.1 Results of the Texturizing Simulationp. 480
5.5.2 Benefits of the Methodp. 481
C6 Reengineering of a Cable Carp. 483
6.1 Cable Car Systemp. 484
6.2 Reengineering of a Transport Processp. 485
6.3 Flow Diagrams and State Chartsp. 486
6.3.1 Flow Diagrams of the Systemp. 486
6.3.2 State Chart of the Cable Car Drivep. 487
6.3.3 System Hierarchyp. 490
6.4 Transport Simulationp. 491
6.4.1 Remote Controlp. 491
6.4.2 User Interfacep. 491
6.4.3 Program Codep. 493
6.5 Conclusions and Benefits of the Methodp. 495
Appendixp. 497
A.1 Abbreviationsp. 497
A.2 Glossaryp. 499
A.3 Bibliographyp. 501
Indexp. 503