Skip to:Content
|
Bottom
Cover image for Power system state estimation : theory and implementation
Title:
Power system state estimation : theory and implementation
Personal Author:
Series:
Power engineering
Publication Information:
New York : Marcel Dekker, 2004
ISBN:
9780824755706
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010082563 TK1005 A28 2004 Open Access Book Book
Searching...
Searching...
30000010077422 TK1005 A28 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency.

Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges.

Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.


Author Notes

Antonio Gomez Exposito is Chairman, Department of Electrical Engineering, University of Seville, Spain.


Table of Contents

Fernando L. Alvarado
Forewordp. v
Prefacep. vii
1 Introductionp. 1
1.1 Operating States of a Power Systemp. 1
1.2 Power System Security Analysisp. 2
1.3 State Estimationp. 5
1.4 Summaryp. 6
2 Weighted Least Squares State Estimationp. 9
2.1 Introductionp. 9
2.2 Component Modeling and Assumptionsp. 10
2.2.1 Transmission Linesp. 10
2.2.2 Shunt Capacitors or Reactorsp. 10
2.2.3 Tap Changing and Phase Shifting Transformersp. 10
2.2.4 Loads and Generatorsp. 12
2.3 Building the Network Modelp. 12
2.4 Maximum Likelihood Estimationp. 15
2.4.1 Gaussian (Normal) Probability Density Functionp. 15
2.4.2 The Likelihood Functionp. 17
2.5 Measurement Model and Assumptionsp. 18
2.6 WLS State Estimation Algorithmp. 20
2.6.1 The Measurement Function, h(x[superscript k])p. 21
2.6.2 The Measurement Jacobian, Hp. 23
2.6.3 The Gain Matrix, Gp. 25
2.6.4 Cholesky Decomposition of Gp. 27
2.6.5 Performing the Forward/Back Substitutionsp. 27
2.7 Decoupled Formulation of the WLS State Estimationp. 29
2.8 DC State Estimation Modelp. 33
2.9 Problemsp. 33
Referencesp. 36
3 Alternative Formulations of the WLS State Estimationp. 37
3.1 Weaknesses of the Normal Equations Formulationp. 37
3.2 Orthogonal Factorizationp. 42
3.3 Hybrid Methodp. 43
3.4 Method of Peters and Wilkinsonp. 45
3.5 Equality-Constrained WLS State Estimationp. 46
3.6 Augmented Matrix Approachp. 48
3.7 Blocked Formulationp. 50
3.8 Comparison of Techniquesp. 54
3.9 Problemsp. 56
Referencesp. 57
4 Network Observability Analysisp. 59
4.1 Networks and Graphsp. 60
4.1.1 Graphsp. 60
4.1.2 Networksp. 61
4.2 Network Matricesp. 61
4.2.1 Branch to Bus Incidence Matrixp. 62
4.2.2 Fundamental Loop to Branch Incidence Matrixp. 63
4.3 Loop Equationsp. 65
4.4 Methods of Observability Analysisp. 66
4.5 Numerical Method Based on the Branch Variable Formulationp. 67
4.5.1 New Branch Variablesp. 67
4.5.2 Measurement Equationsp. 68
4.5.3 Linearized Measurement Modelp. 70
4.5.4 Observability Analysisp. 72
4.6 Numerical Method Based on the Nodal Variable Formulationp. 76
4.6.1 Determining the Unobservable Branchesp. 79
4.6.2 Identification of Observable Islandsp. 81
4.6.3 Measurement Placement to Restore Observabilityp. 84
4.7 Topological Observability Analysis Methodp. 89
4.7.1 Topological Observability Algorithmp. 89
4.7.2 Identifying the Observable Islandsp. 90
4.8 Determination of Critical Measurementsp. 90
4.9 Measurement Designp. 93
4.10 Summaryp. 93
4.11 Problemsp. 93
Referencesp. 97
5 Bad Data Detection and Identificationp. 99
5.1 Properties of Measurement Residualsp. 101
5.2 Classification of Measurementsp. 104
5.3 Bad Data Detection and Identifiabilityp. 104
5.4 Bad Data Detectionp. 105
5.4.1 Chi-squares x[superscript 2] Distributionp. 105
5.4.2 Use of x[superscript 2] Distribution for Bad Data Detectionp. 106
5.4.3 x[superscript 2]-Test for Detecting Bad Data in WLS State Estimationp. 108
5.4.4 Use of Normalized Residuals for Bad Data Detectionp. 110
5.5 Properties of Normalized Residualsp. 111
5.6 Bad Data Identificationp. 111
5.7 Largest Normalized Residual (r[superscript N subscript max]) Testp. 111
5.7.1 Computational Issuesp. 113
5.7.2 Strengths and Limitations of the r[superscript N subscript max] Testp. 115
5.8 Hypothesis Testing Identification (HTI)p. 116
5.8.1 Statistical Properties of e[subscript s]p. 118
5.8.2 Hypothesis Testingp. 119
5.8.3 Decision Rulesp. 120
5.8.4 HTI Strategy Under Fixed [beta]p. 122
5.9 Summaryp. 122
5.10 Problemsp. 123
Referencesp. 125
6 Robust State Estimationp. 127
6.1 Introductionp. 127
6.2 Robustness and Breakdown Pointsp. 128
6.3 Outliers and Leverage Pointsp. 129
6.3.1 Concept of Leverage Pointsp. 130
6.3.2 Identification of Leverage Measurementsp. 131
6.4 M-Estimatorsp. 135
6.4.1 Estimation by Newton's Methodp. 137
6.4.2 Iteratively Re-weighted Least Squares Estimationp. 139
6.5 Least Absolute Value (LAV) Estimationp. 140
6.5.1 Linear Regressionp. 141
6.5.2 LAV Estimation as an LP Problemp. 141
6.5.3 Simplex Based Algorithmp. 145
6.5.4 Interior Point Algorithmp. 150
6.6 Discussionp. 153
6.7 Problemsp. 153
Referencesp. 154
7 Network Parameter Estimationp. 157
7.1 Introductionp. 157
7.2 Influence of Parameter Errors on State Estimation Resultsp. 158
7.3 Identification of Suspicious Parametersp. 163
7.4 Classification of Parameter Estimation Methodsp. 164
7.5 Parameter Estimation Based on Residual Sensitivity Analysisp. 165
7.6 Parameter Estimation Based on State Vector Augmentationp. 167
7.6.1 Solution Using Conventional Normal Equationsp. 170
7.6.2 Solution Based on Kalman Filter Theoryp. 172
7.7 Parameter Estimation Based on Historical Series of Datap. 173
7.8 Transformer Tap Estimationp. 179
7.9 Observability of Network Parametersp. 187
7.10 Discussionp. 188
7.11 Problemsp. 189
Referencesp. 190
8 Topology Error Processingp. 195
8.1 Introductionp. 195
8.2 Types of Topology Errorsp. 197
8.3 Detection of Topology Errorsp. 197
8.4 Classification of Methods for Topology Error Analysisp. 201
8.5 Preliminary Topology Validationp. 203
8.6 Branch Status Errorsp. 204
8.6.1 Residual Analysisp. 205
8.6.2 State Vector Augmentationp. 209
8.7 Substation Configuration Errorsp. 213
8.7.1 Inclusion of Circuit Breakers in the Network Modelp. 214
8.7.2 WLAV Estimatorp. 218
8.7.3 WLS Estimatorp. 221
8.8 Substation Graph and Reduced Modelp. 225
8.9 Implicit Substation Model: State and Status Estimationp. 228
8.10 Observability Analysis Revisitedp. 237
8.11 Problemsp. 240
Referencesp. 242
9 State Estimation Using Ampere Measurementsp. 245
9.1 Introductionp. 245
9.2 Modeling of Ampere Measurementsp. 247
9.3 Difficulties in Using Ampere Measurementsp. 252
9.4 Inequality-Constrained State Estimationp. 255
9.5 Heuristic Determination of P-[theta] Solution Uniquenessp. 261
9.6 Algorithmic Determination of Solution Uniquenessp. 264
9.6.1 Procedure Based on the Residual Covariance Matrixp. 265
9.6.2 Procedure Based on the Jacobian Matrixp. 268
9.7 Identification of Nonuniquely Observable Branchesp. 270
9.8 Measurement Classification and Bad Data Identificationp. 274
9.8.1 LS Estimationp. 275
9.8.2 LAV Estimationp. 277
9.9 Problemsp. 279
Referencesp. 280
Appendix A Review of Basic Statisticsp. 283
A.1 Random Variablesp. 283
A.2 The Distribution Function (d.f.), F(x)p. 283
A.3 The Probability Density Function (p.d.f), f(x)p. 284
A.4 Continuous Joint Distributionsp. 284
A.5 Independent Random Variablesp. 285
A.6 Conditional Distributionsp. 285
A.7 Expected Valuep. 285
A.8 Variancep. 286
A.9 Medianp. 286
A.10 Mean Squared Errorp. 286
A.11 Mean Absolute Errorp. 287
A.12 Covariancep. 287
A.13 Normal Distributionp. 288
A.14 Standard Normal Distributionp. 289
A.15 Properties of Normally Distributed Random Variablesp. 291
A.16 Distribution of Sample Meanp. 292
A.17 Likelihood Function and Maximum Likelihood Estimatorp. 293
A.17.1 Properties of MLE'sp. 293
A.18 Central Limit Theorem for the Sample Meanp. 294
Appendix B Review of Sparse Linear Equation Solutionp. 295
B.1 Solution by Direct Methodsp. 297
B.2 Elementary Matricesp. 298
B.3 LU Factorization Using Elementary Matricesp. 299
B.3.1 Crout's Algorithmp. 299
B.3.2 Doolittle's Algorithmp. 301
B.3.3. Factorization of Sparse Symmetric Matricesp. 302
B.3.4 Ordering Sparse Symmetric Matricesp. 303
B.4 Factorization Path Graphp. 304
B.5 Sparse Forward/Back Substitutionsp. 305
B.6 Solution of Modified Equationsp. 307
B.6.1 Partial Refactorizationp. 309
B.6.2 Compensationp. 311
B.7 Sparse Inversep. 313
B.8 Orthogonal Factorizationp. 315
B.9 Storage and Retrieval of Sparse Matrix Elementsp. 318
B.10 Inserting and/or Deleting Elements in a Linked Listp. 320
B.10.1 Adding a Nonzero Elementp. 320
B.10.2 Deleting a Nonzero Elementp. 321
Referencesp. 322
Indexp. 325
Go to:Top of Page