Skip to:Content
|
Bottom
Cover image for Computational fluid dynamics with moving boundaries
Title:
Computational fluid dynamics with moving boundaries
Publication Information:
Philadelphia, PA : Taylor & Francis , 1996
ISBN:
9781560324584
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000005171834 QC151 C66 1996 Open Access Book Book
Searching...

On Order

Summary

Summary

Presents developments in computational techniques pertaining to moving boundary problems in fluid dynamics. It describes several computational techniques which can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics which involve moving flow boundaries. The book demonstrates the application of a variety of techniques for the numerical solution of moving boundary problems within the framework of the finite-volume approach, with appropriate examples.


Table of Contents

Prefacep. xv
1 Numerical Techniques for Fluid Flows with Moving Boundariesp. 1
1.1 Introductionp. 1
1.1.1 Motivationp. 1
1.1.2 Overview of the Present Workp. 3
1.2 Numerical Methods Applied to General Moving Boundary Problemsp. 6
1.2.1 Choice of Method-Lagrangian or Eulerian?p. 8
1.2.2 Review of Available Methods for Moving Boundary Problemsp. 8
1.2.2.1 Transformation Methods with Body-Fitted Coordinatesp. 9
1.2.2.2 Boundary Element Methods (BEM)p. 9
1.2.2.3 Volume Tracking Methodsp. 9
1.2.2.4 The Level-Set Methodp. 10
1.2.2.5 Moving Unstructured Boundary Conforming Grid Methodsp. 12
1.2.2.6 Phase Field Modelsp. 14
1.2.3 Summaryp. 19
2 Governing Equations and Solution Procedurep. 21
2.1 Formulationp. 22
2.1.1 Governing Equationsp. 22
2.1.2 Governing Equations in a Body-Fitted Coordinate Systemp. 23
2.2 Discretization of the Conservation Lawsp. 24
2.2.1 Pressure-Based Algorithmp. 24
2.2.2 Consistent Estimation of the Metric Termsp. 32
2.2.3 Illustrative Test Casesp. 33
2.2.3.1 Rotated Channel Flowp. 33
2.2.3.2 Uniform Flow Using a Moving Gridp. 35
2.3 Formulation and Solution of Flows with Free Surfacesp. 36
2.3.1 Introductionp. 36
2.3.2 Prediction of Meniscus Shapesp. 39
2.3.2.1 Methodologyp. 39
2.3.2.2 Effect of Convection on Meniscus Shapep. 42
2.3.3 Sources of Convectionp. 43
2.3.3.1 Natural Convectionp. 43
2.3.3.2 Marangoni Convectionp. 43
2.3.4 Nondimensionalization and Scaling Procedurep. 44
2.3.4.1 Heat Conduction Scalesp. 45
2.3.4.2 Natural Convection Scalesp. 45
2.3.4.3 The Marangoni Numberp. 45
2.3.5 Formulation and Computational Algorithm for Transport Processesp. 46
2.3.6 Results and Discussionp. 48
2.3.6.1 Prediction of Meniscus Shapesp. 48
2.3.6.2 Heat Transfer Calculationsp. 51
2.3.6.3 Numerical Procedurep. 52
2.3.6.4 Heat Conduction Onlyp. 52
2.3.6.5 Natural Convectionp. 53
2.3.6.6 Interaction of Natural and Thermocapillary Convectionp. 54
2.3.7 Effect of Convection on Meniscus Shapep. 57
2.4 Conclusionsp. 58
3 Moving Grid Techniques: Fluid Membrane Interactionp. 61
3.1 Description of the Physical Problemp. 61
3.1.1 Potential Flow-Based Membrane Wing Modelsp. 63
3.1.2 Membrane Equilibriump. 65
3.1.3 Nondimensionalization of the Governing Equationsp. 67
3.1.4 The Moving Grid Computational Procedurep. 70
3.1.5 A Potential Flow Model for Thin Wingsp. 72
3.2 Membrane Wings in Steady Flowp. 74
3.2.1 Effect of Outer Boundary Locationp. 74
3.2.2 Classification of Flexible Membrane Wingsp. 76
3.2.3 Elastic Membrane Casep. 76
3.2.4 Inextensible Membrane Casep. 77
3.3 Membrane Wings in Unsteady Flowp. 80
3.3.1 Constant Tension Membrane Casep. 82
3.3.2 Elastic Membrane Casep. 82
3.3.3 Inextensible Membrane Casep. 86
3.4 Summary and Conclusionp. 93
4 Moving Grid Techniques: Modeling Solidification Processesp. 95
4.1 Introductionp. 95
4.1.1 Morphological Instabilities During Solidificationp. 95
4.1.2 Physics of Morphological Instabilities in Solidificationp. 98
4.1.3 Implications of Morphological Instabilitiesp. 103
4.1.4 Need for Numerical Techniquesp. 105
4.2 Requirements of the Numerical Methodp. 107
4.3 Application of the Boundary-Fitted Approachp. 108
4.3.1 Formulationp. 109
4.3.2 Assessment of the Quasi-stationary Approximationp. 112
4.4 A General Procedure for Interface Trackingp. 113
4.4.1 Results and Discussionp. 115
4.4.1.1 Case 1. Calculations with Temperature Field Active in One Phase Onlyp. 115
4.4.1.2 Case 2. Calculations with Temperature Field Active in Both Phasesp. 116
4.4.2 Motion of Curved Frontsp. 117
4.4.2.1 Interfacial Conditionsp. 117
4.4.2.2 Scales for the Morphological Instability Simulationsp. 120
4.4.2.3 Features of the Computational Methodp. 122
4.4.3 Results and Discussionp. 123
4.5 Issues of Scaling and Computational Efficiencyp. 128
4.5.1 Choice of Reference Scales and Resulting Equationsp. 129
4.6 Conclusionsp. 130
5 Fixed Grid Techniques: Enthalpy Formulationp. 135
5.1 Governing Equationsp. 135
5.2 Scaling Issuesp. 136
5.2.1 The Macroscopic Scalesp. 139
5.2.2 Velocity Scalesp. 141
5.2.3 Thermal Scalesp. 143
5.2.3.1 Low Prandtl Number (Metallic Melts)p. 143
5.2.3.2 High Prandtl Number (Organic Melts)p. 144
5.2.4 The Morphological Scalesp. 146
5.2.5 Pure Conductionp. 147
5.2.6 Morphological Scales in the Presence of Convectionp. 149
5.2.6.1 Low Prandtl Number Meltsp. 149
5.2.6.2 High Prandtl Number Meltsp. 150
5.3 Enthalpy Formulationp. 151
5.3.1 Heat Conductionp. 152
5.3.2 Implementationp. 155
5.3.2.1 Implementation of the T-Based Methodp. 155
5.3.2.2 Implementation of the H-Based Methodp. 156
5.3.3 Results and Discussionp. 156
5.3.3.1 Accuracy Assessmentp. 156
5.3.3.2 Performance Assessmentp. 158
5.3.4 Summaryp. 163
5.4 Convective Effectsp. 163
5.4.1 Governing Equationsp. 163
5.4.2 Source Terms in the Momentum Equationsp. 164
5.4.3 Sources of Convectionp. 165
5.4.4 Computational Procedurep. 166
5.5 Bridgman Growth of CdTep. 166
5.6 Multi-Zone Simulation of Bridgman Growth Processp. 171
5.6.1 Governing Equationsp. 173
5.6.2 Two-Level Modeling Strategyp. 177
5.6.2.1 The Global Furnace Simulationp. 177
5.6.2.2 The Refined Ampoule Simulationp. 178
5.7 Float Zone Growth of NiAlp. 184
5.7.1 Calculation Procedurep. 185
5.7.2 Results and Discussionp. 187
5.7.2.1 Heat Conductionp. 187
5.7.2.2 Thermocapillary Convectionp. 188
5.8 Summaryp. 192
6 Fixed Grid Techniques: ELAFINT-Eulerian-Lagrangian Algorithm For INterface Trackingp. 195
6.1 Introductionp. 195
6.2 Interface Tracking Procedurep. 197
6.2.1 Basic Methodologyp. 198
6.2.2 Procedures for Mergers/Breakupsp. 202
6.3 Solution of the Field Equationsp. 211
6.3.1 Control Volume Formulation with Moving Interface with Moving Interfacep. 211
6.3.2 The Control Volume Formulation for a Transport Variablep. 213
6.3.2.1 Discretizationp. 213
6.3.2.2 Treatment of Variables on the Staggered Gridp. 216
6.3.2.3 Computation of Convective Fluxesp. 216
6.3.2.4 Evaluation of the Diffusion and the Full Discretized Formp. 217
6.3.2.5 Evaluation of the Source Termp. 220
6.3.2.6 Computation of Interfacial Fluxesp. 221
6.3.2.7 Computation of the Pressure Fieldp. 227
6.3.2.8 Computing the Velocities of the Interfacial Markersp. 228
6.3.2.9 Dealing with Cut Cellsp. 228
6.3.2.10 Conservation and Consistency at Cell Facesp. 229
6.3.2.11 Anomalous Casesp. 229
6.3.2.12 Distinction Between Liquid and Solid Cellsp. 231
6.3.2.13 Moving Boundary Problems-Treatment of Cells That Change Phasep. 232
6.4 Results for Pure Conductionp. 232
6.4.1 Grid Addition/Deletionp. 233
6.4.2 Planar Interface Propagationp. 234
6.4.3 Non-planar Interfacesp. 235
6.4.4 Zero Surface Tensionp. 236
6.4.5 Low Surface Tensionp. 238
6.4.6 Stable Fingers for Significant Surface Tensionp. 241
6.5 Summaryp. 244
7 Assessment of Fixed Grid Techniquesp. 249
7.1 Introductionp. 249
7.2 Results for Stationary Boundariesp. 249
7.3 Melting from a Vertical Wallp. 250
7.4 Summaryp. 259
7.5 Concluding Remarksp. 260
Referencesp. 261
Indexp. 281
Go to:Top of Page