Cover image for Hydrodynamics and sound
Title:
Hydrodynamics and sound
Personal Author:
Publication Information:
Cambridge, UK : Cambridge University Press, 2007
ISBN:
9780521868624

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010155730 QC151 H68 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

There is a certain body of knowledge and methods that finds application in most branches of fluid mechanics. This book aims to supply a proper theoretical understanding that will permit sensible simplifications to be made in the formulation of problems, and enable the reader to develop analytical models of practical significance. Such analyses can be used to guide more detailed experimental and numerical investigations. As in most technical subjects, such understanding is acquired by detailed study of highly simplified 'model problems'. The first part (Chapters 1-4) is concerned entirely with the incompressible flow of a homogeneous fluid. It was written for the Boston University introductory graduate level course 'Advanced Fluid Mechanics'. The remaining Chapters 5 and 6 deal with dispersive waves and acoustics, and are unashamedly inspired by James Lighthill's masterpiece, Waves in Fluids.


Author Notes

Professor Howe is in the Department of Aerospace and Mechanical Engineering at Boston University


Table of Contents

Prefacep. xv
1 Equations of Motionp. 1
1.1 The fluid statep. 1
1.2 The material derivativep. 1
1.3 Conservation of mass: Equation of continuityp. 2
1.4 Momentum equationp. 3
1.4.1 Relative motion of neighbouring fluid elementsp. 3
1.4.2 Viscous stress tensorp. 5
1.4.3 Navier-Stokes equationp. 7
1.4.4 The Reynolds equation and Reynolds stressp. 7
1.5 The energy equationp. 8
1.5.1 Alternative treatment of the energy equationp. 9
1.5.2 Energy equation for incompressible flowp. 10
1.6 Summary of governing equationsp. 11
1.7 Boundary conditionsp. 12
Problems 1

p. 12

2 Potential Flow of an Incompressible Fluidp. 14
2.1 Ideal fluidp. 14
2.2 Kelvin's circulation theoremp. 14
2.3 The velocity potentialp. 16
2.3.1 Bernoulli's equationp. 16
2.3.2 Impulsive pressurep. 18
2.3.3 Streamlines and intrinsic equations of motionp. 18
2.3.4 Bernoulli's equation in steady flowp. 20
2.4 Motion produced by a pulsating spherep. 21
2.5 The point sourcep. 22
2.6 Free-space Green's functionp. 24
2.7 Monopoles, dipoles, and quadrupolesp. 24
2.7.1 The vibrating spherep. 26
2.7.2 Streamlinesp. 28
2.7.3 Far field of a monopole distribution of zero strengthp. 29
2.8 Green's formulap. 30
2.8.1 Volume and surface integralsp. 30
2.8.2 Green's formulap. 32
2.8.3 Sources adjacent to a plane wallp. 34
2.9 Determinancy of the motionp. 35
2.9.1 Fluid motion expressed in terms of monopole or dipole distributionsp. 37
2.9.2 Determinancy of cyclic irrotational flowp. 39
2.9.3 Kinetic energy of cyclic irrotational flowp. 40
2.10 The kinetic energyp. 41
2.10.1 Converse of Kelvin's minimum-energy theoremp. 43
2.10.2 Energy of motion produced by a translating spherep. 43
2.11 Problems with spherical boundariesp. 45
2.11.1 Legendre polynomialsp. 45
2.11.2 Velocity potential of a point source in terms of Legendre polynomialsp. 50
2.11.3 Interpretation in terms of imagesp. 52
2.12 The Stokes stream functionp. 53
2.12.1 Stream function examplesp. 55
2.12.2 Rankine solidsp. 56
2.12.3 Rankine ovoidp. 58
2.12.4 Drag in ideal flowp. 58
2.12.5 Axisymmetric flow from a nozzlep. 60
2.12.6 Irrotational flow from a circular cylinderp. 63
2.12.7 Borda's mouthpiecep. 65
2.13 The incompressible far fieldp. 67
2.13.1 Deductions from Green's formulap. 68
2.13.2 Far field produced by motion of a rigid bodyp. 69
2.13.3 Inertia coefficientsp. 70
2.13.4 Pressure in the far fieldp. 70
2.14 Force on a rigid bodyp. 71
2.14.1 Moment exerted on a rigid bodyp. 73
2.15 Sources near solid boundariesp. 75
2.15.1 The reciprocal theoremp. 76
2.16 Far-field Green's functionp. 78
2.16.1 The Kirchhoff vectorp. 80
2.16.2 Far-field Green's function for a spherep. 80
2.17 Far-field Green's function for cylindrical bodiesp. 84
2.17.1 The circular cylinderp. 85
2.17.2 The rigid stripp. 86
2.18 Symmetric far-field Green's functionp. 89
2.18.1 Far field of an arbitrarily moving bodyp. 90
2.19 Far-field Green's function summary and special casesp. 91
2.19.1 General formp. 91
2.19.2 Airfoil of variable chordp. 92
2.19.3 Projection or cavity on a plane wallp. 93
2.19.4 Rankine ovoidp. 94
2.19.5 Circular aperturep. 95
2.19.6 Circular discp. 96
Problems 2

p. 96

3 Ideal Flow in Two Dimensionsp. 102
3.1 Complex representation of fluid motionp. 102
3.1.1 The stream functionp. 102
3.1.2 The complex potentialp. 104
3.1.3 Uniform flowp. 104
3.1.4 Flow past a cylindrical surfacep. 105
3.2 The circular cylinderp. 106
3.2.1 Circle theoremp. 106
3.2.2 Uniform flow past a circular cylinderp. 106
3.2.3 The line vortexp. 109
3.2.4 Circular cylinder with circulationp. 110
3.2.5 Equation of motion of a cylinder with circulationp. 112
3.3 The Blasius force and moment formulaep. 115
3.3.1 Blasius's force formula for a stationary rigid bodyp. 116
3.3.2 Blasius's moment formula for a stationary rigid bodyp. 117
3.3.3 Kutta-Joukowski lift forcep. 117
3.3.4 Leading-edge suctionp. 118
3.4 Sources and line vorticesp. 119
3.4.1 Line vorrticesp. 122
3.4.2 Motion of a line vortexp. 122
3.4.3 Karman vortex streetp. 127
3.4.4 Kinetic energy of a system of rectilinear vorticesp. 127
3.5 Conformal transformationsp. 128
3.5.1 Transformation of Laplace's equationp. 129
3.5.2 Equation of motion of a line vortexp. 132
3.5.3 Numerical integration of the vortex path equationp. 133
3.6 The Schwarz-Christoffel transformationp. 135
3.6.1 Irrotational flow from an infinite ductp. 138
3.6.2 Irrotational flow through a wall aperturep. 140
3.7 Free-streamline theoryp. 142
3.7.1 Coanda edge flowp. 142
3.7.2 Mapping from the w plane to the t planep. 147
3.7.3 Separated flow through an aperturep. 147
3.7.4 The wake of a flat platep. 151
3.7.5 Flow past a curved boundaryp. 152
3.7.6 The hodograph transformation formulap. 158
3.7.7 Chaplygin's singular point methodp. 159
3.7.8 Jet produced by a point sourcep. 160
3.7.9 Deflection of trailing-edge flow by a sourcep. 161
3.8 The Joukowski transformationp. 167
3.8.1 The flat-plate airfoilp. 170
3.8.2 Calculation of the liftp. 173
3.8.3 Lift calculated from the Kirchhoff vector force formulap. 173
3.8.4 Lift developed by a starting airfoilp. 174
3.9 The Joukowski airfoilp. 175
3.9.1 Streamline flow past an airfoilp. 176
3.10 Separation and stallp. 179
3.10.1 Linear theory of separationp. 180
3.11 Sedov's methodp. 183
3.11.1 Boundary conditionsp. 184
3.11.2 Sedov's formulap. 185
3.11.3 Tandem airfoilsp. 187
3.11.4 High-lift devicesp. 190
3.11.5 Plain flap or aileronp. 192
3.11.6 Point sources and vorticesp. 192
3.11.7 Flow through a cascadep. 193
3.12 Unsteady thin-airfoil theoryp. 195
3.12.1 The vortex sheet wakep. 195
3.12.2 Translational oscillationsp. 197
3.12.3 The unsteady liftp. 198
3.12.4 Leading-edge suction forcep. 199
3.12.5 Energy dissipated by vorticity productionp. 201
3.12.6 Hankel function formulaep. 202
Problems 3

p. 203

4 Rotational Incompressible Flowp. 211
4.1 The vorticity equationp. 211
4.1.1 Vortex linesp. 212
4.1.2 Vortex tubesp. 212
4.1.3 Movement of vortex lines: Helmholtz's vortex theoremp. 213
4.1.4 Crocco's equationp. 214
4.1.5 Convection and diffusion of vorticityp. 215
4.1.6 Vortex sheetsp. 218
4.2 The Biot-Savart lawp. 221
4.2.1 The far fieldp. 223
4.2.2 Kinetic energyp. 227
4.2.3 The Biot-Savart formula in the presence of an internal boundaryp. 228
4.2.4 The Biot-Savart formula for irrotational flowp. 229
4.3 Examples of axisymmetric vortical flowp. 232
4.3.1 Circular vortex filamentp. 232
4.3.2 Rate of production of vorticity at a nozzlep. 233
4.3.3 Blowing out a candlep. 235
4.3.4 Axisymmetric steady flow of an ideal fluidp. 236
4.3.5 Hill's spherical vortexp. 237
4.4 Some viscous flowsp. 239
4.4.1 Diffusion of vorticity from an impulsively started plane wallp. 239
4.4.2 Diffusion of vorticity from a line vortexp. 240
4.4.3 Creeping flowp. 242
4.4.4 Motion of a sphere at very small Reynolds numberp. 242
4.4.5 The Oseen approximationp. 245
4.4.6 Laminar flow in a tube (Hagen-Poiseuille flow)p. 247
4.4.7 Boundary layer on a flat plate; Karman momentum integral methodp. 249
4.5 Force on a rigid bodyp. 253
4.5.1 Surface force in terms of the impulsep. 254
4.5.2 The Kirchhoff vector force formulap. 256
4.5.3 The Kirchhoff vector force formula for irrotational flowp. 258
4.5.4 Arbitrary motion in a viscous fluidp. 258
4.5.5 Body moving without rotationp. 239
4.5.6 Surface force in two dimensionsp. 261
4.5.7 Bluff body drag at high Reynolds numberp. 261
4.5.8 Modelling vortex shedding from a spherep. 265
4.5.9 Force and impulse in fluid of non-uniform densityp. 270
4.5.10 Integral identitiesp. 271
4.6 Surface momentp. 273
4.6.1 Moment for a non-rotating bodyp. 273
4.6.2 Airfoil lift, drag, and momentsp. 274
4.7 Vortex-surface interactionsp. 276
4.7.1 Pressure expressed in terms of the total enthalpyp. 276
4.7.2 Equation for Bp. 277
4.7.3 Solution of the B equationp. 278
4.7.4 The far fieldp. 279
Problems 4

p. 281

5 Surface Gravity Wavesp. 286
5.1 Introductionp. 286
5.1.1 Conditions at the free surfacep. 286
5.1.2 Wave motion within the fluidp. 287
5.1.3 Linearised approximationp. 288
5.1.4 Time harmonic, plane waves on deep waterp. 288
5.1.5 Water of finite depthp. 290
5.2 Surface wave energyp. 291
5.2.1 Wave-energy densityp. 293
5.2.2 Wave-energy fluxp. 294
5.2.3 Group velocityp. 295
5.3 Viscous damping of surface wavesp. 297
5.3.1 The interior dampingp. 297
5.3.2 Boundary-layer dampingp. 298
5.3.3 Comparison of boundary-layer and internal damping for long wavesp. 299
5.4 Shallow-water wavesp. 299
5.4.1 Waves on water of variable depthp. 300
5.4.2 Shallow-water Green's functionp. 301
5.4.3 Waves generated by a localised pressure risep. 302
5.4.4 Waves approaching a sloping beachp. 307
5.5 Method of stationary phasep. 309
5.5.1 Formulation of initial-value dispersive-wave problemsp. 309
5.5.2 Evaluation of Fourier integrals by the method of stationary phasep. 311
5.5.3 Numerical results for the surface displacementp. 313
5.5.4 Conservation of energyp. 315
5.5.5 Rayleigh's proof that energy propagates at the group velocityp. 317
5.5.6 Surface wave-energy equationp. 318
5.5.7 Waves generated by a submarine explosionp. 319
5.6 Initial-value problems in two surface dimensionsp. 321
5.6.1 Waves generated by a surface elevation symmetric about the originp. 322
5.6.2 The energy equation in two dimensionsp. 324
5.7 Surface motion near a wavefrontp. 325
5.7.1 One-dimensional wavesp. 325
5.7.2 Waves generated by motion of the seabedp. 328
5.7.3 Tsunami produced by an undersea earthquakep. 332
5.8 Periodic wave sourcesp. 333
5.8.1 One-dimensional wavesp. 334
5.8.2 Periodic sources in two surface dimensionsp. 336
5.8.3 The surface wave powerp. 339
5.8.4 Surface wave amplitudep. 340
5.9 Ship wavesp. 341
5.9.1 Moving line pressure sourcep. 342
5.9.2 Wave-making resistancep. 343
5.9.3 Moving point-like pressure sourcep. 345
5.9.4 Plotting the wave crestsp. 349
5.9.5 Behaviour at the causticp. 351
5.9.6 Wave-making powerp. 352
5.9.7 Wave amplitude calculated from the powerp. 354
5.10 Ray theoryp. 354
5.10.1 Kinematic theory of wave crestsp. 354
5.10.2 Ray tracing in an inhomogeneous mediump. 357
5.10.3 Refraction of waves at a sloping beachp. 357
5.11 Wave actionp. 364
5.11.1 Variational description of a fully dispersed wave groupp. 365
5.11.2 Fully dispersed waves in a non-uniformly moving mediump. 366
5.11.3 General wave-bearing mediap. 369
5.12 Diffraction of surface waves by a breakwaterp. 373
5.12.1 Diffraction by a long, straight breakwaterp. 373
5.12.2 Solution of the diffraction problemp. 374
5.12.3 The surface wave patternp. 377
5.12.4 Uniform asymptotic approximation: Method of steepest descentsp. 379
Problems 5

p. 384

6 Introduction to Acousticsp. 390
6.1 The wave equationp. 390
6.1.1 The linear wave equationp. 391
6.1.2 Plane wavesp. 392
6.1.3 Speed of soundp. 393
6.2 Acoustic Green's functionp. 395
6.2.1 The impulsive point sourcep. 395
6.2.2 Green's functionp. 396
6.2.3 Retarded potentialp. 397
6.2.4 Sound from a vibrating spherep. 397
6.2.5 Acoustic energy fluxp. 399
6.2.6 Green's function in one space dimension: Method of descentp. 400
6.2.7 Waves generated by a one-dimensional volume sourcep. 401
6.3 Kirchhoff's formulap. 401
6.4 Compact Green's functionp. 403
6.4.1 Generalized Kirchhoff formulap. 403
6.4.2 The time harmonic wave equationp. 404
6.4.3 The compact approximationp. 404
6.4.4 Rayleigh scattering: Scattering by a compact bodyp. 407
6.5 One-dimensional propagation through junctionsp. 409
6.5.1 Continuity of volume velocityp. 410
6.5.2 Continuity of pressurep. 410
6.5.3 Reflection and transmission at a junctionp. 411
6.6 Branching systemsp. 413
6.6.1 Fundamental formulap. 414
6.6.2 Energy transmissionp. 415
6.6.3 Acoustically compact cavityp. 416
6.6.4 The Helmholtz resonatorp. 417
6.6.5 Acoustic filterp. 418
6.6.6 Admittance of a narrow constrictionp. 419
6.7 Radiation from an open endp. 421
6.7.1 Rayleigh's method for low-frequency soundp. 421
6.7.2 The reflection coefficientp. 423
6.7.3 Admittance of the open endp. 423
6.7.4 Open-end input admittancep. 424
6.7.5 Flanged openingp. 426
6.7.6 Physical significance of the end correctionp. 428
6.7.7 Admittance of a circular aperturep. 431
6.8 Webster's equationp. 432
6.9 Radiation into a semi-infinite ductp. 435
6.9.1 The compact Green's functionp. 435
6.9.2 Wave generation by a train entering a tunnelp. 439
6.10 Damping of sound in a smooth-walled ductp. 445
6.10.1 Time harmonic propagation in a ductp. 446
6.10.2 The viscous contributionp. 447
6.10.3 The thermal contributionp. 449
6.10.4 The thermo-viscous damping coefficientp. 450
Problems 6

p. 450

Bibliographyp. 455
Indexp. 457