Skip to:Content
|
Bottom
Cover image for The finite element method in heat transfer and fluid dynamics
Title:
The finite element method in heat transfer and fluid dynamics
Series:
CRC series in computational mechanics and applied analysis.
Edition:
3rd ed.
Publication Information:
Boca Raton, FL : CRC Press, 2010.
Physical Description:
xxiii, 500 p. : ill. ; 27 cm.
ISBN:
9781420085983
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010235752 TA357 R43 2010 Open Access Book Book
Searching...

On Order

Summary

Summary

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures--particularly the Finite Element Method (FEM)--to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer.

This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions' key material and popular style in regard to text organization, equation numbering, references, and symbols.

This updated third edition features new or extended coverage of:

Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows


With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.


Author Notes

J.N. Reddy earned a Ph.D. in Engineering Mechanics from the University of Alabama in Huntsville, worked as a Postdoctoral Fellow at the University of Texas at Austin, was Research Scientist for Lockheed Missiles and Space Company during l974.75, and taught at the University of Oklahoma from 1975 to 1980 and Virginia Polytechnic Institute & State University from 1980 to 1992. Currently, he is a Distinguished Professor and the inaugural holder of the Oscar S. Wyatt Endowed Chair at Texas A&M University, College Station. Dr. Reddy has published over 400 journal papers and 16 textbooks on theoretical formulations and numerical simulations of problems in solid and structural mechanics, computational fluid dynamics, numerical heat transfer, computational biology, geology and geophysics, mechanics of nanosystems, and applied mathematics.

Dr. Reddy is the recipient of numerous honors and awards, including the 1998 Nathan M. Newmark Medal from the American Society of Civil Engineers, the 2003 Computational Solid Mechanics award from the U.S. Association of Computational Mechanics, the 2004 Distinguished Research Award from the American Society for Composites, and an honorary degree (Honoris Causa) from the Technical University of Lisbon, Portugal (2009). Dr. Reddy is a fellow of the American Academy of Mechanics, the American Institute of Aeronautics and Astronautics, the American Society of Civil Engineers, the American Society of Mechanical Engineers, the American Society for Composites, International Association of Computational Mechanics, U.S. Association of Computational Mechanics, the Aeronautical Society of India, and the Institution of Structural Engineers, U.K. Dr. Reddy serves on the editorial boards of two dozen journals, and as the Editor-in-Chief of Applied Mechanics Reviews, Mechanics of Advanced Materials and Structures, International Journal of Computational Methods in Engineering Science and Mechanics, and International Journal of Structural Stability and Dynamics. As a result of his extensive publications of archival journal papers and books, Dr. Reddy is recognized by ISI Highly Cited Researchers with over 10,000 citations and an H-index of over 40 to his credit. A more complete resume with links to journal papers can be found at http://authors.isihighlycited.com/ or http://www.tamu.edu/acml.

D.K. Gartling is a senior scientist in the Engineering Sciences Center at Sandia Nationa Laboratories, Albuquerque, New Mexico. He earned his B.S. and M.S. in Aerospace Engineering at the University of Texas at Austin and completed the diploma course at th von Karman Institute for Fluid Dynamics in Brussels, Belgium. After completion of his Ph.D. in Aerospace Engineering at the University of Texas at Austin, he joined the technical staff at Sandia National Laboratories. Dr. Gartling was a Visiting Associate Professor in the Mechanical Engineering Department at the University of Sydney, Australia, under a Fulbright Fellowship, and later he was a Supervisor in the Fluid and Thermal Sciences Department at Sandia National Laboratories. Dr. Gartling has published numerous papers dealing with Þnite element model development and finite element analysis of heat transfer and fluid dynamics problems of practical importance. He is the recipient of the 2001 Computational Fluid Dynamics Award from the U.S. Association of Computational Mechanics and is a fellow of the American Society of Mechanical Engineers. Dr. Gartling is presently a member of several professional societies, serves on the editorial boards o several journals, and is the Co-Editor of International Journal for Numerical Methods I Fluids.


Go to:Top of Page