Cover image for PEM fuel cell electrocatalysts and catalyst layers : fundamentals and applications
Title:
PEM fuel cell electrocatalysts and catalyst layers : fundamentals and applications
Publication Information:
Berlin, GW : Springer, 2008
Physical Description:
xxi, 1137 p. : ill. ; 25 cm.
ISBN:
9781848009356
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010194319 TK2931 P46 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. "PEM Fuel Cell Electrocatalysts and Catalyst Layers" provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.


Author Notes

Dr Jiujun Zhang is a Senior Research Officer and PEM Catalysis Core Competency Leader at the National Research Council of Canada Institute for Fuel Cell Innovation (NRC-IFCI). Dr Zhang has over twenty-six years of R&D experience in theoretical and applied electrochemistry, including over twelve years of fuel cell R&D (among these six years at Ballard Power Systems and four years at NRC-IFCI), and three years of electrochemical sensor experience. Dr Zhang holds seven adjunct professorships, including one at the University of Waterloo and one at the University of British Columbia. His research is based on: low/non-Pt cathode catalyst development with long-term stability for catalyst cost reduction; preparation of novel material-supported Pt catalysts through ultrasonic spray pyrolysis; catalyst layer/cathode structure; fundamental understanding through first principles theoretical modeling; catalyst layer characterization and electrochemical evaluation; and preparation of cost-effective MEAs for fuel cell testing and evaluation. Dr Zhang has co-authored more than 140 research papers published in refereed journals and holds over ten US patents. He has also produced in excess of seventy industrial technical reports. Dr Zhang is an active member of The Electrochemical Society, the International Society of Electrochemistry, and the American Chemical Society.


Table of Contents

Xiao-Zi Yuan and Haijiang WangChaojie Song and Jiujun ZhangHui Li and Kunchan Lee and Jiujun ZhangElod GyengeZheng ShiHui Li and Chaojie Song and Jianlu Zhang and Jiujun ZhangPei Kang ShenMichael H. Eikerling and Kourosh Malek and Qianpu WangChristina Bock and Helga Halvorsen and Barry MacDougallShijun Liao and Baitao Li and Yingwei LiZhigang QiHansan Liu and Jiujun ZhangHansan Liu and Dingguo Xia and Jiujun ZhangXueliang Sun and Madhu Sudan SahaKunchan Lee and Lei Zhang and Jiujun ZhangSiyu YeSiyu YeChaojie Song and Rob Hui and Jiujun ZhangHuamin Zhang and Xiaoli Wang and Jianlu Zhang and Jiujun ZhangRadenka MaricJianlu Zhang and Jiujun ZhangWei XingJing Li
1 PEM Fuel Cell Fundamentalsp. 1
1.1 Overviewp. 1
1.1.1 Introductionp. 1
1.1.2 Main Cell Components and Materialsp. 11
1.1.3 PEM Fuel Cell Operationp. 17
1.1.4 PEM Fuel Cell Applicationsp. 25
1.2 Thermodynamicsp. 31
1.2.1 Basic Reactionsp. 31
1.2.2 Heat of Reactionp. 41
1.2.3 Effect of Operation Conditions on Reversible Fuel Cell Potentialp. 42
1.2.4 Open Circuit Voltagep. 44
1.2.5 Fuel Cell Efficiencyp. 48
1.2.6 Summaryp. 50
1.3 Reaction Kineticsp. 53
1.3.1 Electrode Reactionsp. 53
1.3.2 Reaction Ratep. 53
1.3.3 Mass Transferp. 60
1.3.4 Multiple Kineticsp. 65
1.3.5 Polarization Curve and Voltage Lossesp. 67
1.3.6 Measures to Improve Cell Performancep. 78
Referencesp. 79
2 Electrocatalytic Oxygen Reduction Reactionp. 89
2.1 Introductionp. 89
2.1.1 Electrochemical O 2 Reduction Reactionsp. 89
2.1.2 Kinetics of the O 2 Reduction Reactionp. 90
2.1.3 Techniques Used in Electrocatalytic O 2 Reduction Reactionsp. 93
2.2 Oxygen Reduction on Graphite and Carbonp. 101
2.2.1 Oxygen Reduction Reaction Mechanismsp. 102
2.2.2 Kinetics of the ORR on Carbon Materialsp. 107
2.2.3 Catalytic Sites on Carbon Materialsp. 108
2.3 Oxygen Reduction Catalyzed by Quinone and Derivativesp. 109
2.3.1 AO Process for O 2 Reduction to Produce H 2 O 2p. 109
2.3.2 ORR Mechanism Electrochemically Catalyzed by Quinonep. 110
2.4 Oxygen Reduction on Metal Catalystsp. 110
2.4.1 ORR Mechanism on Ptp. 110
2.4.2 Mixed Pt Surface and Rest Potential on Ptp. 112
2.4.3 ORR Kinetics on Ptp. 113
2.4.4 ORR on Pt Alloysp. 114
2.4.5 Catalytic ORR on Other Metalsp. 116
2.5 ORR on Macrocyclic Transition Metal Complexesp. 117
2.5.1 ORR Mechanisms Catalyzed by Transition Metal Macrocyclic Complexesp. 117
2.5.2 Transition Metal Macrocycles as ORR Catalystsp. 117
2.5.3 ORR Kinetics Catalyzed by Transition Metal Macrocyclic Complexesp. 121
2.6 ORR Catalyzed by Other Catalystsp. 122
2.6.1 ORR Catalyzed by Transition Metal Chalcogenidesp. 122
2.6.2 ORR Catalyzed by Transition Metal Carbidep. 124
2.7 Superoxide Ionp. 125
2.7.1 Production of Superoxide Ion by Other Methodsp. 125
2.7.2 Properties of Superoxide Ionp. 126
2.7.3 Stability of Superoxide Ionp. 127
2.7.4 Superoxide Production by Electrocatalysisp. 127
2.8 Conclusionsp. 129
Referencesp. 129
3 Electrocatalytic H 2 Oxidation Reactionp. 135
3.1 Introductionp. 135
3.2 Electrooxidation of Hydrogenp. 136
3.2.1 Mechanism of the Hydrogen Oxidation Reactionp. 136
3.2.2 Thermodynamic Considerations for the Hydrogen Electrode Reactionp. 138
3.2.3 Kinetics of the Hydrogen Oxidation Reactionp. 138
3.2.4 Hydrogen Adsorption Behaviorp. 143
3.2.5 Kinetic Parameters of the Hydrogen Oxidation Reactionp. 147
3.3 Electrocatalysis of Hydrogen Oxidationp. 149
3.3.1 Platinum and Platinum Group Metals (Pt, Ru, Pd, Ir, Os, and Rh)p. 149
3.3.2 Carbidesp. 156
3.3.3 Raney Nickelp. 156
3.3.4 Typical Example Analysis - PtRu Alloy as a CO-tolerant Catalyst for the HORp. 157
3.4 Conclusionsp. 159
Referencesp. 159
4 Electrocatalytic Oxidation of Methanol, Ethanol and Formic Acidp. 165
4.1 Introductionp. 165
4.1.1 Historical Overview: 1960-1990p. 165
4.1.2 Objectivesp. 171
4.2 Reaction Pathways, Catalyst Selection and Performance: Example Analysisp. 172
4.2.1 Methanol Electrooxidationp. 172
4.2.2 Formic Acid Electrooxidationp. 201
4.2.3 Ethanol Electrooxidationp. 219
4.2.4 Non-precious Metal Catalysts for Methanol, Formic Acid, and Ethanol Oxidationp. 224
4.3 Advances in Anode Catalyst Layer Engineering: Example Analysisp. 230
4.3.1 Engineering of the Catalyst Surface and Morphologyp. 230
4.3.2 The Catalytic Interface: Catalyst/Support/Ionomer Interactionp. 236
4.4 Conclusionsp. 269
Referencesp. 270
5 Application of First Principles Methods in the Study of Fuel Cell Air-Cathode Electrocatalysisp. 289
5.1 Introductionp. 289
5.2 Backgroundp. 290
5.2.1 Theoretical Methodsp. 290
5.2.2 Oxygen Reduction Reactionp. 291
5.3 Surface Adsorptionp. 293
5.3.1 Computational Methodsp. 294
5.3.2 Adsorption on Transition Metalsp. 295
5.3.3 Adsorption on Bimetallic Alloysp. 299
5.4 Activation Energyp. 306
5.4.1 Computational Methodp. 306
5.4.2 Example Calculationsp. 307
5.5 Thermodynamic Properties: Reversible Potential and Reaction Energyp. 311
5.5.1 Reversible Potentialp. 311
5.5.2 Reaction Thermodynamicsp. 313
5.6 Study of Non-noble Catalystsp. 316
5.7 Summaryp. 324
Referencesp. 324
6 Catalyst Contamination in PEM Fuel Cellsp. 331
6.1 Introductionp. 331
6.2 Anode Catalyst Layer Contaminationp. 331
6.2.1 Impacts of Carbon Dioxidep. 332
6.2.2 Impacts of Hydrogen Sulfide (H 2 S)p. 334
6.2.3 Impacts of Ammonium (NH 3 )p. 337
6.2.4 Modeling of the Contamination of the PEMFC Anode Catalystp. 337
6.2.5 Mitigation of Anode Contaminationp. 339
6.3 Cathode Catalyst Layer Contaminationp. 339
6.3.1 SO x Contaminationp. 340
6.3.2 NO x Contaminationp. 343
6.3.3 NH 3 and H 2 S Contaminationp. 346
6.3.4 Volatile Organic Compounds (VOCs) Contaminationp. 347
6.3.5 Ozone Contaminationp. 348
6.3.6 The Contamination Effects of Multi-contaminantsp. 348
6.3.7 Modeling of PEMFC Cathode Catalyst Contaminationp. 349
6.4 Additive Effects of Anode and Cathode Contaminationp. 349
6.5 Summaryp. 350
Referencesp. 351
7 PEM Fuel Cell Catalyst Layers and MEAsp. 355
7.1 Fundamentals of Catalyst Layersp. 355
7.1.1 Components and Structurep. 356
7.1.2 Functions and Reactionsp. 356
7.1.3 Factors Affecting the Performance of CLsp. 359
7.1.4 Catalyst Layers for Liquid Fuel Cellsp. 366
7.1.5 Catalyst Layers for Anion Exchange Membrane Fuel Cellsp. 367
7.2 Principles of Membrane Electrode Assembly (MEA)p. 369
7.2.1 Classification of MEA Materialsp. 370
7.2.2 Methods for MEA Fabricationp. 371
7.2.3 Technical Considerationp. 372
7.2.4 MEA for Anion Exchange Membrane Fuel Cellsp. 373
7.3 Conclusionsp. 374
Referencesp. 374
8 Catalyst Layer Modeling: Structure, Properties and Performancep. 381
8.1 Introductionp. 381
8.2 Understanding Structure and Operation of Catalyst Layersp. 383
8.2.1 Challenges for the Structural Designp. 383
8.2.2 Porous Electrode Theory: Historical Perspectivep. 384
8.2.3 Misapprehensions and Controversial Issuesp. 387
8.2.4 Effectiveness of Catalyst Utilizationp. 388
8.2.5 Evaluating the Performance of CLsp. 391
8.3 State of the Art in Theory and Modeling: Multiple Scalesp. 395
8.4 Structural Formation of Catalyst Layers and Effective Propertiesp. 398
8.4.1 Molecular Dynamics Simulationsp. 398
8.4.2 Atomistic MD Simulations of CLsp. 400
8.4.3 Meso-scale Model of CL Microstructure Formationp. 403
8.4.4 Structure-related Effective Properties of CLsp. 407
8.5 Performance Modeling and Optimization Studiesp. 412
8.5.1 General Framework of Performance Modelingp. 412
8.5.2 Transport and Reaction in Catalyst Layersp. 415
8.5.3 Spherical Agglomeratesp. 418
8.5.4 Main Results of the Macrohomogeneous Approachp. 425
8.5.5 Water Management in CCLsp. 428
8.6 Comparison and Evaluation of Catalyst Layer Designsp. 433
8.6.1 Conventional Catalyst Layersp. 434
8.6.2 Ultra-thin Two-phase Catalyst Layersp. 434
8.7 Summary and Outlookp. 438
Referencesp. 439
9 Catalyst Synthesis Techniquesp. 447
9.1 Introductionp. 447
9.2 Catalysis Synthesis Methodsp. 447
9.2.1 Low-temperature Chemical Precipitationp. 448
9.2.2 Colloidalp. 448
9.2.3 Sol-gelp. 449
9.2.4 Impregnationp. 450
9.2.5 Microemulsionsp. 451
9.2.6 Electrochemicalp. 453
9.2.7 Spray Pyrolysisp. 454
9.2.8 Vapor Depositionp. 455
9.2.9 High-energy Ball Millingp. 457
9.3 Particle Size and Shape Controlp. 458
9.3.1 Mechanism for Size Control Using Colloidal Synthesis Methodsp. 460
9.3.2 Size Control Using Electrochemical Methodsp. 463
9.3.3 Assistance of Templates and Template Preparationp. 463
9.3.4 Shape Controlp. 467
9.4 Bi-metallic Catalystsp. 468
9.4.1 Synthesis of Alloy versus Two-phase Catalystsp. 468
9.4.2 Sub-monolayer Deposition of Ad-metalsp. 472
9.5 Non-noble Metal Catalyst Synthesisp. 474
9.5.1 Macrocyclic Complexesp. 474
9.5.2 Methanol Tolerance and the Economics of these Catalystsp. 476
9.5.3 Transition Metal Chalcogenidesp. 477
9.5.4 Conclusionsp. 478
Referencesp. 479
10 Physical Characterization of Electrocatalystsp. 487
10.1 Introductionp. 487
10.2 Analysis of Composition and Phase of Catalystp. 488
10.2.1 X-ray Diffraction (XRD) and Electron Diffraction (ED)p. 488
10.2.2 X-ray Fluorescence (XRF), X-ray Emission (XRE), and Proton-induced X-ray Emission (PIXE)p. 497
10.3 Measurement of Physical Surface Area and Electrochemical Active Surface Areap. 498
10.3.1 BET Method and Physical Surface Areap. 498
10.3.2 Electrochemical Hydrogen Adsorption/Desorptionp. 499
10.3.3 Typical Examples Analysisp. 501
10.4 Morphology of Catalysts and Their Active Componentsp. 505
10.4.1 Scanning Electron Microscopy (SEM)p. 505
10.4.2 Transmission Electron Microscopyp. 506
10.4.3 Typical Examplesp. 507
10.5 The Structure and Crystallography of Surface and Small Active Component Particlesp. 512
10.5.1 Principles of Electron Spectroscopy for Chemical Analysis (ESCA)p. 512
10.5.2 X-ray Photoelectron Spectroscopy (XPS)p. 513
10.5.3 UV-induced Photoelectron Spectroscopy (UVPS)p. 519
10.5.4 Energy Dispersive Spectroscopy (EDS) and its Applicationp. 522
10.6 Analysis of the Stability of Catalysts by the Thermal Analysis Methodp. 525
10.6.1 Principlesp. 525
10.6.2 Applicationp. 526
10.6.3 Typical Examples of Analysisp. 527
10.7 Other Structural Techniques for Characterizing the Bulk and Surface of Electrocatalystsp. 532
10.7.1 FTIR and UV-VISp. 532
10.7.2 TPD/TPRp. 534
10.8 Conclusionp. 536
Referencesp. 536
11 Electrochemical Methods for Catalyst Activity Evaluationp. 547
11.1 Electrochemical Cellsp. 547
11.1.1 Introductionp. 547
11.1.2 Conventional 3-Electrode Cellsp. 548
11.1.3 Half-cellsp. 551
11.1.4 Single Cellsp. 553
11.2 Brief Principles of Electrochemical Instrumentationp. 556
11.3 Cyclic Voltammetryp. 556
11.3.1 Basic Principlesp. 556
11.3.2 Potential Step Experimentp. 558
11.3.3 Instrumentation: Potentiostatp. 559
11.3.4 Applicationsp. 560
11.4 Rotating Disk and Rotating Ring-disk Electrode Techniquesp. 567
11.4.1 Theories and Principlesp. 567
11.4.2 Instrumentationp. 570
11.4.3 Fuel Cell-related Applicationsp. 570
11.5 Electrochemical Impedance Spectroscopyp. 573
11.5.1 Theories and Principlesp. 573
11.5.2 Instrumentationp. 578
11.5.3 Application in Fuel Cellsp. 578
11.6 Current Interruption and Current Pulse Techniquesp. 585
11.6.1 Principles and Instrumentationp. 585
11.6.2 Application in Fuel Cellsp. 587
11.7 Steady-state I-V Polarizationp. 588
11.7.1 Principles and Instrumentationp. 588
11.7.2 Fuel Cell Hardwarep. 589
11.7.3 Fuel Cell Performancep. 590
11.8 Durability Evaluationp. 592
11.8.1 Introductionp. 592
11.8.2 Techniquesp. 593
11.9 Summaryp. 602
List of Symbolsp. 602
Referencesp. 604
12 Combinatorial Methods for PEM Fuel Cell Electrocatalystsp. 609
12.1 Introductionp. 609
12.1.1 Combinatory Material Chemistryp. 609
12.1.2 Electrocatalysis in PEM Fuel Cellsp. 611
12.2 Combinatorial Methods for Fuel Cell Electrocatalysisp. 612
12.2.1 Catalyst Library Preparationp. 612
12.2.2 Catalyst Activity Down-selectionp. 617
12.3 Combinatorial Discoveries of Fuel Cell Electrocatalystsp. 622
12.3.1 Low/Non-platinum Content Catalysts for PEM Fuel Cell Cathodesp. 623
12.3.2 CO-tolerant Catalysts for PEM Fuel Cell Anodesp. 625
12.3.3 Platinum Alloy Catalysts for Direct Methanol Fuel Cell Anodesp. 625
12.3.4 Methanol-tolerant Catalysts for Direct Methanol Fuel Cell Cathodesp. 627
12.4 Conclusionsp. 628
Referencesp. 629
13 Platinum-based Alloy Catalysts for PEM Fuel Cellsp. 631
13.1 Introductionp. 631
13.2 Pt-based Alloy Catalysts for PEM Fuel Cell Cathodesp. 632
13.2.1 The Alloying Effect on Cathode Catalyst Activityp. 632
13.2.2 Mechanism of the Alloying Effect on Cathode Catalystsp. 635
13.2.3 Stability of Pt-based Alloy Cathode Catalystsp. 640
13.3 Pt-based Alloy Catalysts for DMFC Anodesp. 643
13.3.1 The Alloying Effect on Anode Catalyst Activityp. 643
13.3.2 Mechanism of the Alloying Effect on Anode Catalystsp. 646
13.3.3 The Stability of Pt-based Alloy Anode Catalystsp. 649
13.4 Concluding Remarksp. 650
Referencesp. 651
14 Nanotubes, Nanofibers and Nanowires as Supports for Catalystsp. 655
14.1 Introductionp. 655
14.1.1 The Importance of Combining Nanotechnology and Clean Energyp. 655
14.1.2 One-dimensional Nanomaterials Based New Catalyst Supportsp. 656
14.2 Synthesis and Characterization of Carbon Nanotubes, Nanofibers, and Nanowiresp. 657
14.2.1 Structure and Synthesis Methods for Carbon Nanotubesp. 657
14.2.2 Structure and Synthesis Methods for Carbon Nanofibersp. 661
14.2.3 Structure and Synthesis Methods for Nanowiresp. 661
14.3 Synthesis and Characterization of Pt Catalysts Supported on Carbon Nanotubes, Carbon Nanofibers and Metal Oxide Nanowiresp. 665
14.3.1 Introductionp. 665
14.3.2 Methods for Depositing Pt Catalysts on Carbon Nanotubes (Pt/CNTs)p. 666
14.3.3 Methods for Depositing Pt Catalysts on Carbon Nanofibers (Pt/CNFs)p. 682
14.3.4 Methods for Depositing Pt Catalysts on Metal Oxide Nanowires (Pt/NWs)p. 684
14.3.5 Methods of Functionalizing of Carbon Nanotubes and Nanofibers-based Fuel Cell Electrodesp. 687
14.4 Activity Validation of the Synthesized Catalysts in a Fuel Cell Operationp. 693
14.4.1 Fabrication of Membrane Electrode Assembly for Carbon Nanotubes and Nanofibers-based Catalystsp. 693
14.4.2 Performance of Carbon Nanotubes and Nanofibers Membrane Electrode Assemblyp. 697
14.5 Stability of Carbon Nanotubes and Nanofibers-based Fuel Cell Electrodesp. 700
14.6 Conclusions and Future Perspectivep. 702
Referencesp. 704
15 Non-noble Electrocatalysts for the PEM Fuel Cell Oxygen Reduction Reactionp. 715
15.1 Introductionp. 715
15.2 Transition Metal Macrocycles for the Oxygen Reduction Reactionp. 716
15.2.1 The Central Transition Metal Effectp. 717
15.2.2 The Ligand Effectp. 719
15.2.3 The Heat-treatment Effectp. 720
15.2.4 The Effect of the Synthesis Methodp. 721
15.3 Non-noble Transition Metal Carbides and Nitrides for the ORRp. 725
15.3.1 Carbidesp. 725
15.3.2 Nitridesp. 728
15.3.3 Oxynitridesp. 730
15.3.4 Carbonitridesp. 733
15.4 Transition Metal Chalcogenides for the ORRp. 734
15.5 Metal Oxides for the ORRp. 742
15.6 Conclusionsp. 748
Referencesp. 748
16 CO-tolerant Catalystsp. 759
16.1 Introductionp. 759
16.2 Mechanisms of CO Tolerancep. 764
16.2.1 Electrochemistry of Carbon Monoxide and Hydrogenp. 766
16.2.2 Characteristics of PEMFC CO Poisoningp. 770
16.2.3 Bifunctional Mechanism of CO Tolerancep. 771
16.2.4 Direct Mechanism of CO Tolerance (Ligand or Electronic Effect)p. 773
16.2.5 Surface Science Study and Modeling of CO-tolerance Mechanismp. 774
16.3 Development of CO-tolerant Catalystsp. 781
16.3.1 PtRu Binary Systemp. 783
16.3.2 PtMo Binary Systemp. 787
16.3.3 PtSn Binary Systemp. 790
16.3.4 PtM (M = Fe, Co, Ni, Ta, Rh, Pd) Binary Systemsp. 791
16.3.5 PtRuM (M = Mo, Sn, W, Cr, Zr, Nb, Ag, Au, Rh, Os, and Ta) Ternary Systemsp. 794
16.3.6 The Pt, PtRu-MO x (M = Mo, W, and V) Systemp. 796
16.3.7 Ru-modified Pt Catalysts and Pt-modified Ru Catalystsp. 799
16.3.8 PtRu on Functionalized Carbon and Carbon Nanotube Systemsp. 802
16.3.9 PtAu Binary Systemp. 804
16.3.10 Pt-free Systemsp. 804
16.4 Preparation of CO-tolerant Catalystsp. 805
16.5 Conclusionsp. 809
Referencesp. 811
17 Reversal-tolerant Catalyst Layersp. 835
17.1 Introductionp. 835
17.2 Cell Voltage Reversalp. 838
17.2.1 Air Starvationp. 838
17.2.2 Fuel Starvationp. 839
17.2.3 Electrocatalyst Degradation in PEM Fuel Cells Caused by Cell Voltage Reversal During Fuel Starvationp. 842
17.3 Development of Reversal-tolerant Catalyst Layersp. 845
17.3.1 Reversal Tolerance Cathode Catalyst Layerp. 846
17.3.2 Reversal Tolerance Anode Catalyst Layerp. 847
17.4 Conclusionsp. 856
Referencesp. 856
18 High-temperature PEM Fuel Cell Catalysts and Catalyst Layersp. 861
18.1 Opportunities and Challenges for High-temperature PEM Fuel Cellsp. 861
18.1.1 Advantages of High-temperature PEM Fuel Cellsp. 861
18.1.2 Routes to Increase the Operating Temperaturep. 867
18.1.3 Challenges of Catalysts/Catalyst Layersp. 867
18.2 Catalysts for High-temperature PEM Fuel Cellsp. 868
18.2.1 Current Research Activitiesp. 868
18.2.2 Degradation of Catalysts at High Temperaturesp. 869
18.2.3 Catalyst Support Strategy to Improve High-temperature Catalysts/Catalyst Layersp. 876
18.2.4 High-temperature Catalyst Layers - Components and Structurep. 877
18.2.5 Strategies for HT Catalyst/Catalyst Layer Performance Improvement and Mitigationp. 878
18.2.6 Suggestions for Future Workp. 878
18.2.7 Typical Example Analysisp. 878
18.3 Summaryp. 884
Referencesp. 884
19 Conventional Catalyst Ink, Catalyst Layer and MEA Preparationp. 889
19.1 Introductionp. 889
19.2 Principles of Gas Diffusion Electrodes and MEA Structurep. 889
19.3 Catalyst Layerp. 893
19.3.1 Preparation of Catalyst Inkp. 893
19.3.2 Preparation of the Catalyst Layerp. 895
19.4 Preparation of the MEAp. 911
19.5 Summary and Outlookp. 911
Referencesp. 912
20 Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layersp. 917
20.1 Introductionp. 917
20.2 Spray Pyrolysis Approachp. 919
20.2.1 Current Research Activitiesp. 919
20.2.2 Spray Conversion and Aerosol Routes for Powder Manufacturingp. 919
20.2.3 Pt Nanoparticle Preparation via Spray Routep. 921
20.2.4 Morphology of Catalyst Deposited by Spray Pyrolysisp. 922
20.2.5 Electrochemical Performancep. 925
20.2.6 Electrocatalytic Activity and Stability of Pt-based Catalystsp. 926
20.2.7 Typical Example Analysisp. 928
20.3 Deposition of Catalyst Layer by CVDp. 929
20.3.1 Current Research Activitiesp. 930
20.3.2 Film Formation from Vapor Phase by CVDp. 931
20.3.3 Morphological and Microstructural Stabilityp. 933
20.3.4 Electrochemical Performance and Catalytic Activityp. 935
20.3.5 Typical Examples Analysisp. 939
20.4 Flame-based Processingp. 941
20.4.1 Current Research Activitiesp. 942
20.4.2 Atomization Processp. 943
20.4.3 Particle Formation in the Flamep. 944
20.4.4 Particle Size Controlp. 946
20.4.5 Electrochemical Performance and Catalytic Activity of the Flame Deposited Catalystp. 950
20.4.6 Typical Examples Analysisp. 954
20.5 Summaryp. 958
Referencesp. 958
21 Catalyst Layer/MEA Performance Evaluationp. 965
21.1 Introductionp. 965
21.2 Theoretical Analysisp. 966
21.2.1 Open Circuit Voltage (OCV) of the PEMFCp. 966
21.2.2 Exchange Current Density, i 0p. 968
21.2.3 Tafel Slope, bp. 968
21.2.4 Polarization Curve Analysisp. 971
21.3 Physical Chemistry Evaluation of Catalyst Layerp. 973
21.3.1 Pore Structure Analysis of Catalyst Layerp. 973
21.3.2 Protonic and Electronic Conductivity in the Catalyst Layerp. 974
21.3.3 Wettability of the Catalyst Layerp. 975
21.4 Catalyst Layer Evaluation in a Half-cellp. 978
21.4.1 Rotating Disk Electrode (RDE) Testp. 978
21.4.2 Cyclic Voltammetry (CV) Testp. 981
21.4.3 Polarization Curves in a Half-cellp. 984
21.5 MEA Evaluation by the Single-cell Testp. 986
21.5.1 Test Stationp. 986
21.5.2 Polarization Curvep. 988
21.5.3 Resistance Test - AC Impedance Testp. 988
21.5.4 Permeability/Crossover Testp. 992
21.6 Lifetime/Durability Testing of the MEAp. 994
21.6.1 Mechanisms of MEA Degradationp. 994
21.6.2 Durability Testingp. 996
21.7 Conclusionsp. 997
Referencesp. 997
22 Catalyst Layer Composition Optimizationp. 1003
22.1 Catalyst Layer Materials Selection and Evaluationp. 1003
22.1.1 Catalyst selectionp. 1003
22.1.2 Gas Diffusion Layer (GDL) and Microporous Layer (MPL) Materials Selectionp. 1011
22.2 Fabrication Optimization Processes for the Catalyst Layer of MEAsp. 1016
22.2.1 GDL Substrate Preparationp. 1016
22.2.2 Microporous Layer (MPL) Preparation and Optimizationp. 1017
22.2.3 Catalyst Ink Composition and Preparationp. 1019
22.2.4 Carbon-supported Catalyst Layer Fabricationp. 1023
22.2.5 Pt Catalyst Layer Fabricationp. 1027
22.2.6 MEA Fabrication and Optimizationp. 1029
22.3 MEA Performance Verification with its Catalyst Layer Fabrication Optimization Processp. 1031
22.3.1 MEA Performance Characterizationp. 1031
22.3.2 MEA Water Management Characterizationp. 1032
22.3.3 MEA CO and Other Contamination Tolerancep. 1032
22.3.4 MEA Lifetime Enhancement via MEA Fabrication Process Improvementp. 1033
Referencesp. 1033
23 Catalyst Layer Degradation, Diagnosis and Failure Mitigationp. 1041
23.1 Introductionp. 1041
23.2 Diagnosis of Catalyst Layer Degradation: Fuel Cell Failure Analysisp. 1044
23.2.1 Diagnostic Tools to Identify Catalyst Degradation During Fuel Cell Operation: Electrochemical Methodsp. 1045
23.2.2 Ex situ Tools for Characterization of Catalyst Degradation During Fuel Cell Operationp. 1049
23.2.3 Durability and Accelerated Stress Testingp. 1054
23.3 Anode Catalyst Layer Degradationp. 1056
23.3.1 Anode Catalyst Layer Degradation Caused by Contaminationp. 1056
23.3.2 Anode Catalyst Layer Degradation-Voltage Reversalp. 1061
23.3.3 Ru Leaching and Crossoverp. 1064
23.4 Cathode Catalyst Layer Degradationp. 1066
23.4.1 Platinum Dissolution During Fuel Cell Operationp. 1066
23.4.2 Pt Accumulation and Distribution in the Membrane after Fuel Cell Operationp. 1073
23.4.3 Loss of Platinum Surface Area Due to Agglomerationp. 1075
23.4.4 Carbon Corrosion of Catalyst Layerp. 1080
23.5 Summaryp. 1087
Referencesp. 1089
Acronyms and Abbreviationsp. 1095
Contributor Biographiesp. 1103
Author Indexp. 1117
Subject Indexp. 1119