Cover image for Fundamentals of protein NMR spectroscopy
Title:
Fundamentals of protein NMR spectroscopy
Personal Author:
Series:
Focus on structural biology ; 5
Publication Information:
Dordrecht, The Netherlands : Springer, 2006
ISBN:
9781402034992
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010119059 QP801.P64 R84 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.


Author Notes

Professor of Biological Sciences at Carnegie Mellon University.

Professor Rule's research is directed at understanding inter-molecular interactions in biological systems. An understanding of these interactions is required if biological systems are to be comprehended at the molecular level. The combined tools of molecular biology, NMR spectroscopy and x-ray crystallography are used to provide important information to aid in our understanding of these interactions. Our research efforts have been directed at enzyme-substrate interactions, protein-lipid interactions, antibody-antigen interactions, and protein-nucleic acid interactions


Table of Contents

List of Figuresp. xvii
List of Tablesp. xxvi
1 NMR Spectroscopyp. 1
1.1 Introduction to NMR Spectroscopyp. 2
1.2 One Dimensional NMR Spectroscopyp. 3
1.2.1 Classical Description of NMR Spectroscopyp. 3
1.2.2 Nuclear Spin Transitionsp. 3
1.3 Detection of Nuclear Spin Transitionsp. 7
1.3.1 Continuous Wave NMRp. 7
1.3.2 Pulsed NMRp. 8
1.3.3 Summary of the Process of Acquiring a One Dimensional Spectrump. 15
1.4 Phenomenological Description of Relaxationp. 16
1.4.1 Relaxation and the Evolution of Magnetizationp. 18
1.5 Chemical Shieldingp. 19
1.6 Characteristic [superscript 1]H, [superscript 13]C and [superscript 15]N Chemical Shiftsp. 21
1.6.1 Effect of Electronic Structure on Chemical Shiftsp. 21
1.6.2 Ring Current Effectsp. 23
1.6.3 Effects of Local Environment on Chemical Shiftsp. 25
1.6.4 Use of Chemical Shifts in Resonance Assignmentsp. 25
1.6.5 Chemical Shift Dispersion & Multi-dimensional NMRp. 26
1.7 Exercisesp. 26
1.8 Solutionsp. 26
2 Practical Aspects of Acquiring NMR Spectrap. 29
2.1 Components of an NMR Spectrometerp. 29
2.1.1 Magnetp. 29
2.1.2 Computerp. 31
2.1.3 Probep. 31
2.1.4 Pre-amplifier Modulep. 32
2.1.5 The Field-frequency Lockp. 33
2.1.6 Shim Systemp. 34
2.1.7 Transmitter & Pulse Generationp. 34
2.1.8 Receiverp. 36
2.2 Acquiring a Spectrump. 38
2.2.1 Sample Preparationp. 38
2.2.2 Beginning the Experimentp. 39
2.2.3 Temperature Measurementp. 39
2.2.4 Shimmingp. 40
2.2.5 Tuning and Matching the Probep. 41
2.2.6 Adjusting the Transmitterp. 42
2.2.7 Calibration of the 90[degree] Pulse Lengthp. 46
2.2.8 Setting the Sweepwidth: Dwell Times and Filtersp. 48
2.2.9 Setting the Receiver Gainp. 53
2.2.10 Spectral Resolution and Acquisition Time of the FIDp. 54
2.3 Experimental 1D-pulse Sequence: Pulse and Receiver Phasep. 57
2.3.1 Phase Cyclep. 58
2.3.2 Phase Cycle and Artifact Suppressionp. 61
2.4 Exercisesp. 63
2.5 Solutionsp. 64
3 Introduction to Signal Processingp. 65
3.1 Removal of DC Offsetp. 66
3.2 Increasing Resolution by Extending the FIDp. 66
3.2.1 Increasing Resolution by Zero-fillingp. 67
3.2.2 Increasing Resolution by Linear Prediction (LP)p. 69
3.3 Removal of Truncation Artifacts: Apodizationp. 74
3.3.1 Effect of Apodization on Resolution and Noisep. 74
3.3.2 Using LP & Apodization to Increase Resolutionp. 77
3.4 Solvent Suppressionp. 78
3.5 Spectral Artifacts Due to Intensity Errorsp. 79
3.5.1 Errors from the Digital Fourier Transformp. 79
3.5.2 Effect of Distorted and Missing Pointsp. 80
3.5.3 Delayed Acquisitionp. 82
3.6 Phasing of the Spectrump. 82
3.6.1 Origin of Phase Shiftsp. 83
3.6.2 Applying Phase Correctionsp. 85
3.7 Chemical Shift Referencingp. 86
3.8 Exercisesp. 87
3.9 Solutionsp. 87
4 Quantum Mechanical Description of NMRp. 89
4.1 Schrodinger Equationp. 89
4.1.1 Vector Spaces and Properties of Wavefunctionsp. 90
4.1.2 Particle in a Boxp. 92
4.2 Expectation Valuesp. 93
4.3 Dirac Notationp. 94
4.3.1 Wavefunctions in Dirac Notationp. 94
4.3.2 Scalar Product in Dirac Notationp. 96
4.3.3 Operators in Dirac Notationp. 96
4.3.4 Expectation Values in Dirac Notationp. 96
4.4 Hermitian Operatorsp. 97
4.4.1 Determining Eigenvaluesp. 97
4.5 Additional Properties of Operatorsp. 100
4.5.1 Commuting Observablesp. 100
4.5.2 Time Evolution of Observablesp. 100
4.5.3 Trace of an Operatorp. 100
4.5.4 Exponential Operatorp. 101
4.5.5 Unitary Operatorsp. 101
4.5.6 Exponential Hermitian Operatorsp. 101
4.6 Hamiltonian and Angular Momentum Operators for a Spin-1/2 Particlep. 102
4.7 Rotationsp. 105
4.7.1 Rotation Groupsp. 105
4.7.2 Rotation Operatorsp. 106
4.7.3 Rotations of Wave Functions and Operatorsp. 109
4.8 Exercisesp. 112
4.9 Solutionsp. 112
5 Quantum Mechanical Description of a One Pulse Experimentp. 113
5.1 Preparation: Evolution of the System Under B[subscript o]p. 114
5.2 Excitation: Effect of Application of B[subscript 1]p. 116
5.2.1 The Resonance Conditionp. 118
5.3 Detection: Evolution of the System Under B[subscript o]p. 120
6 The Density Matrix & Product Operatorsp. 121
6.1 Introduction to the Density Matrixp. 122
6.1.1 Calculation of Expectation Values From [rho]p. 123
6.1.2 Density Matrix for a Statistical Mixturep. 123
6.2 One-pulse Experiment: Density Matrix Descriptionp. 126
6.2.1 Effect of Pulses on the Density matrixp. 127
6.3 Product Operatorsp. 129
6.3.1 Transformation Properties of Product Operatorsp. 130
6.3.2 Description of the One-pulse Experimentp. 131
6.3.3 Evaluation of Composite Pulsesp. 132
6.4 Exercisesp. 133
6.5 Solutionsp. 133
7 Scalar Couplingp. 135
7.1 Introduction to Scalar Couplingp. 135
7.2 Basis of Scalar Couplingp. 136
7.2.1 Coupling to Multiple Spinsp. 138
7.3 Quantum Mechanical Descriptionp. 140
7.3.1 Analysis of an AX Systemp. 140
7.3.2 Analysis of an AB Systemp. 142
7.4 Decouplingp. 145
7.4.1 Experimental Implementation of Decouplingp. 145
7.4.2 Decoupling Methodsp. 146
7.4.3 Performance of Decoupling Schemesp. 148
7.5 Exercisesp. 150
7.6 Solutionsp. 150
8 Coupled Spins: Density Matrix and Product Operator Formalismp. 153
8.1 Density Matrix for Two Coupled Spinsp. 153
8.2 Product Operator Representation of the Density Matrixp. 155
8.2.1 Detectable Elements of [rho]p. 156
8.3 Density Matrix Treatment of a One-pulse Experimentp. 159
8.4 Manipulation of Two-spin Product Operatorsp. 162
8.5 Transformations of Two-spin Product Operatorsp. 164
8.6 Product Operator Treatment of a One-pulse Experimentp. 165
9 Two Dimensional Homonuclear J-Correlated Spectroscopyp. 169
9.1 Multi-dimensional Experimentsp. 170
9.1.1 Elements of Multi-dimensional NMR Experimentsp. 171
9.1.2 Generation of Multi-dimensional NMR Spectrap. 172
9.2 Homonuclear J-correlated Spectrap. 173
9.2.1 COSY Experimentp. 173
9.3 Double Quantum Filtered COSY (DQF-COSY)p. 182
9.3.1 Product Operator Treatment of the DQF-COSY Experimentp. 182
9.4 Effect of Passive Coupling on COSY Crosspeaksp. 185
9.5 Scalar Correlation by Isotropic Mixing: TOCSYp. 187
9.5.1 Analysis of TOCSY Pulse Sequencep. 188
9.5.2 Isotropic Mixing Schemesp. 191
9.5.3 Time Dependence of Magnetization Transfer by Isotropic Mixingp. 192
9.6 Exercisesp. 194
9.7 Solutionsp. 195
10 Two Dimensional Heteronuclear J-Correlated Spectroscopyp. 197
10.1 Introductionp. 197
10.2 Two Dimensional Heteronuclear NMR Experimentsp. 198
10.2.1 HMQC Experimentp. 199
10.2.2 HSQC Experimentp. 204
10.2.3 Refocused-HSQC Experimentp. 207
10.2.4 Comparison of HMQC, HSQC, and Refocused-HSQC Experimentsp. 209
10.2.5 Sensitivity in 2D-Heteronuclear Experimentsp. 209
10.2.6 Behavior of XH[subscript 2] Systems in HSQC-type Experimentsp. 210
11 Coherence Editing: Pulsed-Field Gradients and Phase Cyclingp. 213
11.1 Principals of Coherence Selectionp. 214
11.1.1 Spherical Basis Setp. 214
11.1.2 Coherence Changes in NMR Experimentsp. 216
11.1.3 Coherence Pathwaysp. 218
11.2 Phase Encoding With Pulsed-Field Gradientsp. 218
11.2.1 Gradient Coilsp. 218
11.2.2 Effect of Coherence Levels on Gradient Induced Phase Changesp. 220
11.2.3 Coherence Selection by Gradients in Heteronuclear NMR Experimentsp. 222
11.3 Coherence Selection Using Phase Cyclingp. 225
11.3.1 Coherence Changes Induced by RF-Pulsesp. 226
11.3.2 Selection of Coherence Pathwaysp. 229
11.3.3 Phase Cycling in the HMQC Pulse Sequencep. 233
11.4 Exercisesp. 235
11.5 Solutionsp. 235
12 Quadrature Detection in Multi-Dimensional NMR Spectroscopyp. 239
12.1 Quadrature Detection Using TPPIp. 240
12.2 Hypercomplex Method of Quadrature Detectionp. 242
12.2.1 States-TPPI - Removal of Axial Peaksp. 243
12.3 Sensitivity Enhancementp. 245
12.4 Echo-AntiEcho Quadrature Detection: N-P Selectionp. 247
12.4.1 Absorption Mode Lineshapes with N-P Selectionp. 247
13 Resonance Assignments: Homonuclear Methodsp. 251
13.1 Overview of the Assignment Processp. 251
13.2 Homonuclear Methods of Assignmentp. 254
13.3 [superscript 15]N Separated Homonuclear Techniquesp. 256
13.3.1 2D [superscript 15]N HSQC Experimentp. 259
13.3.2 3D [superscript 15]N Separated TOCSY Experimentp. 259
13.3.3 The HNHA Experiment - Identifying H[subscript alpha] Protonsp. 262
13.3.4 The HNHB Experiment- Identifying H[subscript beta] Protonsp. 265
13.3.5 Establishing Spin-system Connectivities with Dipolar Couplingp. 267
13.4 Exercisesp. 272
13.5 Solutionsp. 273
14 Resonance Assignments: Heteronuclear Methodsp. 277
14.1 Mainchain Assignmentsp. 278
14.1.1 Strategyp. 278
14.1.2 Methods for Mainchain Assignmentsp. 279
14.2 Description of Triple-resonance Experimentsp. 282
14.2.1 HNCO Experimentp. 282
14.2.2 HNCA Experimentp. 290
14.3 Selective Excitation and Decoupling of [superscript 13]Cp. 294
14.3.1 Selective 90[degree] Pulsesp. 294
14.3.2 Selective 180[degree] Pulsesp. 297
14.3.3 Selective Decoupling: SEDUCEp. 298
14.3.4 Frequency Shifted Pulsesp. 299
14.4 Sidechain Assignmentsp. 300
14.4.1 Triple-resonance Methods for Sidechain Assignmentsp. 301
14.4.2 The HCCH Experimentp. 302
14.5 Exercisesp. 308
14.6 Solutionsp. 310
15 Practical Aspects of N-Dimensional Data Acquisition and Processingp. 313
15.1 Sample Preparationp. 313
15.1.1 NMR Sample Tubesp. 313
15.1.2 Sample Requirementsp. 313
15.2 Solvent Considerations - Water Suppressionp. 315
15.2.1 Amide Exchange Ratesp. 315
15.2.2 Solvent Suppressionp. 316
15.3 Instrument Configurationp. 324
15.3.1 Probe Tuningp. 324
15.4 Calibration of Pulsesp. 326
15.4.1 Proton Pulsesp. 326
15.4.2 Heteronuclear Pulsesp. 326
15.5 T[subscript 1], T[subscript 2] and Experimental Parametersp. 328
15.5.1 Fundamentals of Nuclear Spin Relaxationp. 328
15.5.2 Effect of Molecular Weight and Magnetic Field Strength on T[subscript 1] and T[subscript 2]p. 330
15.5.3 Effect of Temperature on T[subscript 2]p. 332
15.5.4 Relaxation Interference: TROSYp. 332
15.5.5 Determination of T[subscript 1] and T[subscript 2]p. 337
15.6 Acquisition of Multi-Dimensional Spectrap. 338
15.6.1 Setting Polarization Transfer Delaysp. 338
15.6.2 Defining the Directly Detected Dimension: t[subscript 3]p. 339
15.6.3 Defining Indirectly Detected Dimensionsp. 340
15.7 Processing 3-Dimensional Datap. 346
15.7.1 Data Structurep. 346
15.7.2 Defining the Spectral Matrixp. 346
15.7.3 Data Processingp. 348
15.7.4 Processing the Directly Detected Domainp. 348
15.7.5 Variation in Processingp. 349
15.7.6 Useful Manipulations of the Free Induction Decayp. 351
16 Dipolar Couplingp. 353
16.1 Introductionp. 353
16.1.1 Energy of Interactionp. 353
16.1.2 Effect of Isotropic Tumbling on Dipolar Couplingp. 356
16.1.3 Effect of Anisotropic Tumblingp. 357
16.2 Measurement of Inter-proton Distancesp. 358
16.2.1 NOESY Experimentp. 360
16.2.2 Crosspeak Intensity in the NOESY Experimentp. 363
16.2.3 Effect of Molecular Weight on the Intensity of NOESY Crosspeaksp. 364
16.2.4 Experimental Determination of Inter-proton Distancesp. 366
16.3 Residual Dipolar Coupling (RDC)p. 368
16.3.1 Generating Partial Alignment of Macromoleculesp. 369
16.3.2 Theory of Dipolar Couplingp. 371
16.3.3 Measurement of Residual Dipolar Couplingsp. 375
16.3.4 Estimation of the Alignment Tensorp. 380
17 Protein Structure Determinationp. 383
17.1 Energy Functionsp. 385
17.1.1 Experimental Datap. 385
17.1.2 Covalent and Non-covalent Interactionsp. 391
17.2 Energy Minimization and Simulated Annealingp. 392
17.2.1 Energy Minimizationp. 393
17.2.2 Simulated Annealingp. 393
17.3 Generation of Starting Structuresp. 395
17.3.1 Random Coordinatesp. 395
17.3.2 Distance Geometryp. 395
17.3.3 Refinementp. 397
17.4 Illustrative Example of Protein Structure Determinationp. 399
18 Exchange Processesp. 403
18.1 Introductionp. 403
18.2 Chemical Exchangep. 404
18.3 General Theory of Chemical Exchangep. 407
18.3.1 Fast Exchange Limitp. 409
18.3.2 Slow Exchange Limitp. 410
18.3.3 Intermediate Time Scalesp. 410
18.4 Measurement of Chemical Exchangep. 411
18.4.1 Very Slow Exchange: k[subscript ex]p. 411
18.4.2 Slow Exchange: k[subscript ex]p. 413
18.4.3 Slow to Intermediate Exchange: k[subscript ex approximate Delta nu]p. 414
18.4.4 Fast Exchange: k[subscript ex] > [Delta nu]p. 414
18.4.5 Measurement of Exchange Using CPMG Methodsp. 419
18.5 Distinguishing Fast from Slow Exchangep. 425
18.5.1 Effect of Temperaturep. 425
18.5.2 Magnetic Field Dependencep. 426
18.6 Ligand Binding Kineticsp. 427
18.6.1 Slow Exchangep. 428
18.6.2 Intermediate Exchangep. 429
18.6.3 Fast Exchangep. 429
18.7 Exercisesp. 430
18.8 Solutionsp. 430
19 Nuclear Spin Relaxation and Molecular Dynamicsp. 431
19.1 Introductionp. 431
19.1.1 Relaxation of Excited Statesp. 432
19.2 Time Dependent Field Fluctuationsp. 434
19.2.1 Chemical Shift Anisotropyp. 434
19.2.2 Dipolar Couplingp. 437
19.2.3 Frequency Components from Molecular Rotationp. 438
19.3 Spin-lattice (T[subscript 1]) and Spin-spin (T[subscript 2]) Relaxationp. 442
19.3.1 Spin-lattice Relaxationp. 442
19.3.2 Spin-lattice Relaxation of Like Spinsp. 445
19.3.3 Spin-lattice Relaxation of Unlike Spinsp. 445
19.3.4 Spin-spin Relaxationp. 446
19.3.5 Heteronuclear NOEp. 447
19.4 Motion and the Spectral Density Functionp. 448
19.4.1 Random Isotropic Motionp. 448
19.4.2 Anisotropic Motion - Non-spherical Proteinp. 448
19.4.3 Constrained Internal Motionp. 449
19.4.4 Combining Internal and External Motionp. 451
19.5 Effect of Internal Motion on Relaxationp. 451
19.5.1 Anisotropic Rotational Diffusionp. 454
19.6 Measurement and Analysis of Relaxation Datap. 455
19.6.1 Pulse Sequencesp. 455
19.6.2 Measuring Heteronuclear T[subscript 1]p. 457
19.6.3 Measuring Heteronuclear T[subscript 2]p. 459
19.7 Data Analysis and Model Fittingp. 463
19.7.1 Defining Rotational Diffusionp. 463
19.7.2 Determining Internal Rotationp. 466
19.7.3 Systematic Errors in Model Fittingp. 467
19.8 Statistical Testsp. 468
19.8.1 X[superscript 2] Test for Goodness-of-fitp. 468
19.8.2 Test for Inclusion of Additional Parametersp. 470
19.8.3 Alternative Methods of Model Selectionp. 472
19.8.4 Error Propagationp. 472
19.9 Exercisesp. 473
19.10 Solutionsp. 474
Appendicesp. 475
A Fourier Transformsp. 475
A.1 Fourier Seriesp. 475
A.2 Non-periodic Functions - The Fourier Transformp. 476
B Complex Variables, Scalars, Vectors, and Tensorsp. 485
B.1 Complex Numbersp. 485
B.2 Representation of Signals with Complex Numbersp. 486
B.3 Scalars, Vectors, and Tensorsp. 487
C Solving Simultaneous Differential Equations: Laplace Transformsp. 491
C.1 Laplace Transformsp. 491
D Building Blocks of Pulse Sequencesp. 497
D.1 Product operatorsp. 497
D.2 Common Elements of Pulse Sequencesp. 498
Referencesp. 505
Indexp. 519