Cover image for Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods
Title:
Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods
Personal Author:
Series:
Springer Series in Advanced Manufacturing,
Publication Information:
London : Springer-Verlag London Limited, 2007.
Physical Description:
xviii, 373 p. : ill., digital ; 24 cm.
ISBN:
9781846288197

9781846288180
General Note:
Available in online version
Added Corporate Author:
Electronic Access:
Full Text
DSP_RESTRICTION_NOTE:
Remote access restricted to users with a valid UTM ID via VPN

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
EB001178 EB 001178 Electronic Book 1:EBOOK
Searching...

On Order

Summary

Summary

Recent worldwide advances in manufacturing technologies led to a metamorphism in the industry. Fast-changing technologies on the product front have created a need for an equally fast response from manufacturing industries, who select manufacturing strategies, product designs, manufacturing processes, and machinery and equipment. Decision makers have the problem of assessing a range of options and selecting one based on conflicting criteria.

This book shows how graph theory and matrix approach, and fuzzy multiple attribute decision making methods can be used in manufacturing. Part I introduces the decision making situations in the manufacturing environment and presents decision making methods; Part II uses case studies to illustrate the applications of these methods in real manufacturing situations.

This book will interest designers, manufacturing engineers, practitioners, managers, institutes involved in design and manufacturing related projects, researchers, academics, and graduates in this field.


Author Notes

Dr R. Venkata Rao is a Professor and the Head of the Department of Mechanical Engineering at the Sardar Vallabhbhai National Institute of Technology, India. Dr Rao's research interests include advanced manufacturing technology, CAD/CAM, CIMS, fuzzy multiple attribute decision making methods, and non-traditional optimization methods.


Table of Contents

Part 1 Introduction to Decision Making
1 Introduction to Decision Making in the Manufacturing Environmentp. 3
1.1 Introductionp. 3
1.2 Decision-making Methods Usedp. 5
2 Graph Theory and Matrix Approach as a Decision-making Methodp. 7
2.1 Introductionp. 7
2.2 Machinability Attributes Digraphp. 8
2.3 Matrix Representation of the Digraphp. 10
2.4 Machinability Indexp. 19
2.5 Identification and Comparison of Work Materialsp. 21
2.5.1 Identification of Work Materialsp. 21
2.5.2 Comparison of Work Materialsp. 22
2.6 Methodology of GTMA as a Decision-making Methodp. 23
Referencesp. 24
3 Introduction to Multiple Attribute Decision-making (MADM) Methodsp. 27
3.1 Introductionp. 27
3.2 Multiple Attribute Decision-making Methodsp. 28
3.2.1 Simple Additive Weighting (SAW) Methodp. 28
3.2.2 Weighted Product Method (WPM)p. 29
3.2.3 Analytic Hierarchy Process (AHP) Methodp. 29
3.2.4 Revised Analytic Hierarchy Process (RAHP) Methodp. 32
3.2.5 Multiplicative Analytic Hierarchy Process (MAHP) Methodp. 32
3.2.6 TOPSIS Methodp. 32
3.2.6.1 Entropy Methodp. 34
3.2.6.2 Standard Deviation Methodp. 35
3.2.6.3 AHP Methodp. 35
3.2.7 Modified TOPSIS Methodp. 35
3.2.8 Compromise Ranking Method (VIKOR)p. 36
3.3 Sensitivity Analysisp. 37
3.4 Group Decision Making (GDM)p. 38
Referencesp. 39
4 A Logical Approach to Fuzzy MADM Problemsp. 43
4.1 Introductionp. 43
4.2 Method Proposed by Chen and Hwang (1992p. 44
4.2.1 Converting Linguistic Terms to Fuzzy Numbersp. 44
4.2.2 Converting Fuzzy Numbers to Crisp Scoresp. 44
4.3 Demonstration of the Methodp. 45
Referencesp. 49
Part 2 Applications of GTMA and Fuzzy MADM Methods in the Manufacturing Environment
5 Material Selection for a Given Engineering Applicationp. 53
5.1 Introductionp. 53
5.2 Examplesp. 55
5.2.1 Example 1p. 56
5.2.1.1 Application of GTMAp. 56
5.2.1.2 SAW Methodp. 58
5.2.1.3 WPMp. 59
5.2.1.4 AHP and its Versionsp. 59
5.2.1.5 TOPSIS Methodp. 61
5.2.1.6 Modified TOPSIS Methodp. 62
5.2.1.7 VIKORp. 63
5.2.2 Example 2p. 64
5.2.2.1 Application of GTMAp. 64
5.2.2.2 SAW Methodp. 65
5.2.2.3 WPMp. 66
5.2.2.4 AHP and its Versionsp. 66
5.2.2.5 TOPSIS Methodp. 67
5.2.2.6 Modified TOPSIS Methodp. 67
Referencesp. 68
6 Evaluation of Product Designsp. 71
6.1 Introductionp. 71
6.2 Examplep. 74
6.2.1 GTMAp. 74
6.2.2 AHP Methodp. 76
6.2.3 TOPSIS Methodp. 77
6.2.4 Modified TOPSIS Methodp. 79
Referencesp. 79
7 Machinability Evaluation of Work Materialsp. 81
7.1 Introductionp. 81
7.2 Examplesp. 84
7.2.1 Example 1p. 84
7.2.1.1 Application of GTMAp. 85
7.2.1.2 SAW Methodp. 87
7.2.1.3 WPMp. 87
7.2.1.4 AHP and its Versionsp. 88
7.2.1.5 TOPSIS Methodp. 88
7.2.1.6 Modified TOPSIS Methodp. 89
7.2.2 Example 2p. 90
7.2.2.1 Application of SAW Methodp. 90
7.2.2.2 WPMp. 91
7.2.2.3 AHP and its Versionsp. 91
7.2.2.4 TOPSIS Methodp. 92
7.2.2.5 Modified TOPSIS Methodp. 93
Referencesp. 93
8 Cutting Fluid Selection for a Given Machining Applicationp. 97
8.1 Introductionp. 97
8.2 Examplesp. 103
8.2.1 Example 1p. 103
8.2.1.1 Application of GTMAp. 104
8.2.1.2 SAW Methodp. 105
8.2.1.3 WPMp. 106
8.2.1.4 AHP and its Versionsp. 106
8.2.1.5 TOPSIS Methodp. 107
8.2.1.6 Modified TOPSIS Methodp. 108
8.2.2 Example 2p. 109
8.2.2.1 GTMAp. 109
8.2.2.2 SAW Methodp. 110
8.2.2.3 WPMp. 111
8.2.2.4 AHP and its Versionsp. 111
8.2.2.5 TOPSIS Methodp. 111
8.2.2.6 Modified TOPSIS Methodp. 112
Referencesp. 112
9 Evaluation and Selection of Modern Machining Methodsp. 115
9.1 Introductionp. 115
9.2 Examplesp. 117
9.2.1 Example 1p. 117
9.2.1.1 GTMAp. 117
9.2.1.2 SAW Methodp. 119
9.2.1.3 WPMp. 120
9.2.1.4 AHP and its Versionsp. 120
9.2.1.5 TOPSIS Methodp. 121
9.2.1.6 Modified TOPSIS Methodp. 121
9.2.2 Example 2p. 121
9.2.2.1 GTMAp. 122
9.2.2.2 TOPSIS Methodp. 123
9.2.2.3 Modified TOPSIS Methodp. 124
Referencesp. 124
10 Evaluation of Flexible Manufacturing Systemsp. 125
10.1 Introductionp. 125
10.2 Examplesp. 127
10.2.1 Example 1p. 127
10.2.1.1 Application of GTMAp. 128
10.2.1.2 AHP and its Versionsp. 130
10.2.2 Example 2p. 131
10.2.2.1 Application of GTMAp. 132
10.2.2.2 AHP and its Versionsp. 133
10.2.2.3 TOPSIS & Modified TOPSIS Methodsp. 134
10.2.2.4 Compromise Ranking Method (VIKOR)p. 134
Referencesp. 135
11 Machine Selection in a Flexible Manufacturing Cellp. 139
11.1 Introductionp. 139
11.2 Examplep. 141
11.2.1 Application of GTMAp. 142
11.2.2 SAW Methodp. 144
11.2.3 WPMp. 145
11.2.4 AHP and its Versionsp. 145
11.2.5 TOPSIS Methodp. 146
11.2.6 Modified TOPSIS Methodp. 146
Referencesp. 147
12 Failure Cause Analysis of Machine Toolsp. 149
12.1 Introductionp. 149
12.2 Identifying Contributing Events of a Failure Causep. 154
12.3 MTFCD and its Matrix Representationp. 156
12.4 General Machine Tool Failure Causality Functionp. 158
12.5 Machine Tool Failure Cause Evaluationp. 160
12.6 Machine Tool Failure Cause Analysisp. 162
12.7 Methodologyp. 163
12.8 Summaryp. 164
Referencesp. 165
13 Robot Selection for a Given Industrial Applicationp. 169
13.1 Introductionp. 169
13.2 Examplesp. 171
13.2.1 Example 1p. 172
13.2.1.1 Application of GTMAp. 172
13.2.1.2 SAW Methodp. 173
13.2.1.3 WPMp. 173
13.2.1.4 AHP and its Versionsp. 174
13.2.1.5 TOPSIS Methodp. 174
13.2.1.6 Modified TOPSIS Methodp. 175
13.2.2 Example 2p. 176
13.2.2.1 Application of GTMAp. 176
13.2.2.2 AHP and its Versionsp. 177
Referencesp. 178
14 Selection of Automated Inspection Systemsp. 181
14.1 Introductionp. 181
14.2 Examplep. 182
14.2.1 Application of GTMAp. 182
14.2.2 AHP and its Versionsp. 185
14.2.3 TOPSIS Methodp. 186
14.2.4 Modified TOPSIS Methodp. 186
Referencesp. 186
15 Selection of Material Handling Equipmentp. 187
15.1 Introductionp. 187
15.2 Examplep. 191
15.2.1 Application of GTMAp. 191
15.2.2 SAW Methodp. 192
15.2.3 WPMp. 193
15.2.4 AHP and its Versionsp. 193
15.2.5 TOPSIS Methodp. 193
15.2.6 Modified TOPSIS Methodp. 194
Referencesp. 194
16 Selection of Rapid Prototyping Process in Rapid Product Developmentp. 197
16.1 Introductionp. 197
16.2 Examplep. 200
16.2.1 Application of GTMAp. 201
16.2.2 SAW Methodp. 203
16.2.3 WPMp. 204
16.2.4 AHP and its Versionsp. 204
16.2.5 TOPSIS Methodp. 205
16.2.6 Modified TOPSIS Methodp. 205
16.2.7 VIKORp. 206
Referencesp. 206
17 Selection of Software in Manufacturing Industriesp. 209
17.1 Introductionp. 209
17.2 Examplep. 211
17.3 General Remarksp. 213
Referencesp. 213
18 Welding Process Selection for a Given Applicationp. 215
18.1 Introductionp. 215
18.2 Examplep. 216
18.2.1 GTMAp. 216
18.2.2 SAW Methodp. 218
18.2.3 WPMp. 218
18.2.4 AHP and its Versionsp. 218
18.2.5 TOPSIS Methodp. 219
Referencesp. 219
19 Geometric Moldability Analysis of Partsp. 221
19.1 Introductionp. 221
19.2 Examplep. 224
19.2.1 GTMAp. 225
19.2.2 SAW Methodp. 226
19.2.3 AHP Methodp. 226
19.2.4 TOPSIS Methodp. 227
19.2.5 Modified TOPSIS Methodp. 228
19.3 General Remarksp. 228
Referencesp. 228
20 Evaluation of Metal Stamping Layoutsp. 231
20.1 Introductionp. 231
20.2 Examplep. 233
20.2.1 Application of GTMAp. 234
20.2.2 SAW Methodp. 236
20.2.3 WPMp. 236
20.2.4 AHP and its Versionsp. 237
20.2.5 TOPSIS Methodp. 238
20.2.6 Modified TOPSIS Methodp. 238
Referencesp. 239
21 Selection of Forging Conditions for Forging a Given Componentp. 243
21.1 Introductionp. 243
21.2 Examplep. 248
21.2.1 GTMAp. 248
21.2.2 SAW Methodp. 249
21.2.3 WPMp. 250
21.2.4 AHP Methodp. 250
21.2.5 TOPSIS Methodp. 250
21.2.6 Modified TOPSIS Methodp. 251
Referencesp. 251
22 Evaluation of Environmentally Conscious Manufacturing Programsp. 255
22.1 Introductionp. 255
22.2 Examplep. 257
22.2.1 GTMAp. 258
22.2.2 SAW Methodp. 259
22.2.3 AHP and its Versionsp. 260
22.2.4 TOPSIS Methodp. 260
22.2.5 Modified TOPSIS Methodp. 261
Referencesp. 262
23 Environmental Impact Assessment of Manufacturing Processesp. 265
23.1 Introductionp. 265
23.2 Examplep. 268
23.2.1 GTMAp. 270
23.2.2 AHP Methodp. 271
23.2.3 TOPSIS Methodp. 272
23.2.4 Modified TOPSIS Methodp. 274
Referencesp. 274
24 Evaluation of Aggregate Risk in Green Manufacturingp. 277
24.1 Introductionp. 277
24.2 Examplep. 280
24.2.1 GTMAp. 280
24.2.2 AHP Methodp. 281
24.2.3 TOPSIS Methodp. 282
24.2.4 Modified TOPSIS Methodp. 282
Referencesp. 283
25 Selection of Best Product End-of-Life Scenariop. 285
25.1 Introductionp. 285
25.2 Examplep. 288
25.2.1 GTMAp. 289
25.2.2 SAW Methodp. 290
25.2.3 WPMp. 290
25.2.4 TOPSIS Methodp. 291
25.2.5 Modified TOPSIS Methodp. 291
25.2.6 Compromise Ranking Method (VIKOR)p. 292
Referencesp. 292
26 Integrated Project Evaluation and Selectionp. 295
26.1 Introductionp. 295
26.2 Examplep. 299
26.2.1 WPMp. 301
26.2.2 TOPSIS Methodp. 301
26.2.3 Modified TOPSIS Methodp. 302
Referencesp. 303
27 Facility Location Selectionp. 305
27.1 Introductionp. 305
27.2 Examplesp. 306
27.2.1 Example 1p. 306
27.2.1.1 GTMAp. 306
27.2.1.2 SAW Methodp. 308
27.2.1.3 WPMp. 308
27.2.1.4 AHP and its Versionsp. 309
27.2.1.5 TOPSIS Methodp. 309
27.2.1.6 Modified TOPSIS Methodp. 310
27.2.2 Example 2p. 310
27.2.2.1 GTMAp. 311
27.2.2.2 AHP and its Versionsp. 312
Referencesp. 312
28 Operational Performance Evaluation of Competing Companiesp. 315
28.1 Introductionp. 315
28.2 Examplep. 316
28.2.1 Application of GTMAp. 317
28.2.2 SAW Methodp. 318
28.2.3 WPMp. 318
28.2.4 AHP and its Versionsp. 318
28.2.5 TOPSIS Methodp. 319
28.2.6 Modified TOPSIS Methodp. 319
Referencesp. 319
29 Vendor Selection in a Supply Chain Environmentp. 321
29.1 Introductionp. 321
29.2 Example 1p. 323
29.2.1 GTMAp. 324
29.2.2 TOPSIS Methodp. 326
29.3 Genetic Algorithmsp. 329
29.4 Proposed Methodologyp. 330
29.5 Example 2p. 331
29.6 General Remarksp. 336
Referencesp. 337
30 Group Decision Making in the Manufacturing Environmentp. 341
30.1 Introductionp. 341
30.2 Examplep. 342
30.2.1 Application of GTMAp. 343
30.2.2 SAW Methodp. 344
30.2.3 WPMp. 344
30.2.4 TOPSIS Methodp. 345
30.2.5 Modified TOPSIS Methodp. 345
30.3 General Remarksp. 345
Referencesp. 346
Appendix Computer Codesp. 347
Indexp. 371