Skip to:Content
|
Bottom
Cover image for Optimal estimation of dynamic systems
Title:
Optimal estimation of dynamic systems
Personal Author:
Series:
Chapman & Hall/CRC applied mathematics & nonlinear science ; 24
Edition:
2nd ed.
Publication Information:
Boca Raton, F.L. : CRC Press, c2012
Physical Description:
xiv, 733 p. : ill. ; 25 cm.
ISBN:
9781439839850
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010316427 QA402 C73 2012 Open Access Book Book
Searching...
Searching...
33000000000758 QA402 C73 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB® codes for the examples are available on the book's website.

New to the Second Edition
With more than 100 pages of new material, this reorganized edition expands upon the best-selling original to include comprehensive developments and updates. It incorporates new theoretical results, an entirely new chapter on advanced sequential state estimation, and additional examples and exercises.

An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.


Author Notes

John L. Crassidis, Ph.D., is a professor of mechanical and aerospace engineering and the associate director of the Center for Multisource Information Fusion at the University at Buffalo, State University of New York. He previously worked at Texas A&M University, the Catholic University of America, and NASA's Goddard Space Flight Center, where he contributed to attitude determination and control schemes for numerous spacecraft missions.

John L. Junkins, Ph.D., is a distinguished professor of aerospace engineering and the founder and director of the Center for Mechanics and Control at Texas A&M University. In addition to his historical contributions in analytical dynamics and spacecraft GNC, Dr. Junkins and his team have designed, developed, and demonstrated several new electro-optical sensing technologies.


Table of Contents

Prefacep. xiii
1 Least Squares Approximationp. 1
1.1 A Curve Fitting Examplep. 2
1.2 Linear Batch Estimationp. 7
1.2.1 Linear Least Squaresp. 9
1.2.2 Weighted Least Squaresp. 14
1.2.3 Constrained Least Squaresp. 16
1.3 Linear Sequential Estimationp. 19
1.4 Nonlinear Least Squares Estimationp. 25
1.5 Basis Functionsp. 35
1.6 Advanced Topicsp. 40
1.6.1 Matrix Decompositions in Least Squaresp. 40
1.6.2 Kronecker Factorization and Least Squaresp. 43
1.6.3 Levenberg-Marquardt Methodp. 48
1.6.4 Projections in Least Squaresp. 50
1.7 Summaryp. 52
2 Probability Concepts in Least Squaresp. 63
2.1 Minimum Variance Estimationp. 63
2.1.1 Estimation without a priori State Estimatesp. 64
2.1.2 Estimation with a priori State Estimatesp. 68
2.2 Unbiased Estimatesp. 74
2.3 Cramer-Rao Inequalityp. 76
2.4 Constrained Least Squares Covariancep. 82
2.5 Maximum Likelihood Estimationp. 84
2.6 Properties of Maximum Likelihood Estimationp. 88
2.6.1 Invariance Principlep. 88
2.6.2 Consistent Estimatorp. 88
2.6.3 Asymptotically Gaussian Propertyp. 90
2.6.4 Asymptotically Efficient Propertyp. 90
2.7 Bayesian Estimationp. 91
2.7.1 MAP Estimationp. 91
2.7.2 Minimum Risk Estimationp. 95
2.8 Advanced Topicsp. 98
2.8.1 Nonuniqueness of the Weight Matrixp. 98
2.8.2 Analysis of Covariance Errorsp. 101
2.8.3 Ridge Estimationp. 103
2.8.4 Total Least Squaresp. 108
2.9 Summaryp. 119
3 Sequential State Estimationp. 135
3.1 A Simple First-Order Filter Examplep. 136
3.2 Full-Order Estimatorsp. 138
3.2.1 Discrete-Time Estimatorsp. 142
3.3 The Discrete-Time Kalman Filterp. 143
3.3.1 Kalman Filter Derivationp. 144
3.3.2 Stability and Joseph's Formp. 149
3.3.3 Information Filter and Sequential Processingp. 151
3.3.4 Steady-State Kalman Filterp. 153
3.3.5 Relationship to Least Squares Estimationp. 156
3.3.6 Correlated Measurement and Process Noisep. 158
3.3.7 Cramér-Rao Lower Boundp. 159
3.3.8 Orthogonality Principlep. 164
3.4 The Continuous-Time Kalman Filterp. 168
3.4.1 Kalman Filter Derivation in Continuous Timep. 168
3.4.2 Kalman Filter Derivation from Discrete Timep. 171
3.4.3 Stabilityp. 175
3.4.4 Steady-State Kalman Filterp. 176
3.4.5 Correlated Measurement and Process Noisep. 182
3.5 The Continuous-Discrete Kalman Filterp. 182
3.6 Extended Kalman Filterp. 184
3.7 Unscented Filteringp. 192
3.8 Constrained Filteringp. 199
3.9 Summaryp. 202
4 Advanced Topics in Sequential State Estimationp. 219
4.1 Factorization Methodsp. 219
4.2 Colored-Noise Kalman Filteringp. 223
4.3 Consistency of the Kalman Filterp. 228
4.4 Consider Kalman Filteringp. 231
4.4.1 Consider Update Equationsp. 232
4.4.2 Consider Propagation Equationsp. 234
4.5 Decentralized Filteringp. 238
4.5.1 Covariance Intersectionp. 240
4.6 Adaptive Filteringp. 244
4.6.1 Batch Processing for Filter Tuningp. 244
4.6.2 Multiple-Modeling Adaptive Estimationp. 249
4.6.3 Interacting Multiple-Model Estimationp. 252
4.7 Ensemble Kalman Filteringp. 257
4.8 Nonlinear Stochastic Filtering Theoryp. 260
4.8.1 Itô Stochastic Differential Equationsp. 263
4.8.2 Itô Formulap. 265
4.8.3 Fokker-Planck Equationp. 267
4.8.4 Kushner Equationp. 269
4.9 Gaussian Sum Filteringp. 270
4.10 Particle Filteringp. 273
4.10.1 Optimal Importance Densityp. 277
4.10.2 Bootstrap Filterp. 279
4.10.3 Rao-Blackwellized Particle Filterp. 287
4.10.4 Navigation Using a Rao-Blackwellized Particle Filterp. 291
4.11 Error Analysisp. 296
4.12 Robust Filteringp. 298
4.13 Summaryp. 302
5 Batch State Estimationp. 325
5.1 Fixed-Interval Smoothingp. 326
5.1.1 Discrete-Time Formulationp. 327
5.1.2 Continuous-Time Formulationp. 339
5.1.3 Nonlinear Smoothingp. 349
5.2 Fixed-Point Smoothingp. 353
5.2.1 Discrete-Time Formulationp. 353
5.2.2 Continuous-Time Formulationp. 357
5.3 Fixed-Lag Smoothingp. 360
5.3.1 Discrete-Time Formulationp. 360
5.3.2 Continuous-Time Formulationp. 363
5.4 Advanced Topicsp. 367
5.4.1 Estimation/Control Dualityp. 367
5.4.2 Innovations Processp. 375
5.5 Summaryp. 382
6 Parameter Estimation: Applicationsp. 391
6.1 Attitude Determinationp. 391
6.1.1 Vector Measurement Modelsp. 392
6.1.2 Maximum Likelihood Estimationp. 395
6.1.3 Optimal Quaternion Solutionp. 396
6.1.4 Information Matrix Analysisp. 400
6.2 Global Positioning System Navigationp. 403
6.3 Simultaneous Localization and Mappingp. 407
6.3.1 3D Point Cloud Registration Using Linear Least Squaresp. 408
6.4 Orbit Determinationp. 411
6.5 Aircraft Parameter Identificationp. 419
6.6 Eigensystem Realization Algorithmp. 425
6.7 Summaryp. 432
7 Estimation of Dynamic Systems: Applicationsp. 451
7.1 Attitude Estimationp. 451
7.1.1 Multiplicative Quaternion Formulationp. 452
7.1.2 Discrete-Time Attitude Estimationp. 457
7.1.3 Murrell's Versionp. 460
7.1.4 Farrenkopf's Steady-State Analysisp. 463
7.2 Inertial Navigation with GPSp. 466
7.2.1 Extended Kalman Filter Application to GPS/INSp. 467
7.3 Orbit Estimationp. 476
7.4 Target Tracking of Aircraftp. 179
7.4.1 The ¿-ß Filterp. 479
7.4.2 The ¿-ß-¿ Filterp. 486
7.4.3 Aircraft Parameter Estimationp. 490
7.5 Smoothing with the Eigensystem Realization Algorithmp. 495
7.6 Summaryp. 499
8 Optimal Control and Estimation Theoryp. 513
8.1 Calculus of Variationsp. 514
8.2 Optimization with Differential Equation Constraintsp. 519
8.3 Pontryagin's Optimal Control Necessary Conditionsp. 521
8.4 Discrete-Time Controlp. 528
8.5 Linear Regulator Problemsp. 529
8.5.1 Continuous-Time Formulationp. 530
8.5.2 Discrete-Time Formulationp. 536
8.6 Linear Quadratic-Gaussian Controllersp. 540
8.6.1 Continuous-Time Formulationp. 541
8.6.2 Discrete-Time Formulationp. 545
8.7 Loop Transfer Recoveryp. 548
8.8 Spacecraft Control Designp. 553
8.9 Summaryp. 558
A Review of Dynamic Systemsp. 575
A.l Linear System Theoryp. 575
A.1.1 The State-Space Approachp. 576
A.1.2 Homogeneous Linear Dynamic Systemsp. 579
A.1.3 Forced Linear Dynamic Systemsp. 583
A.1.4 Linear State Variable Transformationsp. 585
A.2 Nonlinear Dynamic Systemsp. 588
A.3 Parametric Differentiationp. 591
A.4 Observability and Controllabilityp. 593
A.5 Discrete-Time Systemsp. 597
A.6 Stability of Linear and Nonlinear Systemsp. 602
A.7 Attitude Kinematics and Rigid Body Dynamicsp. 608
A.7.1 Attitude Kinematicsp. 608
A.7.2 Rigid Body Dynamicsp. 614
A. 8 Spacecraft Dynamics and Orbital Mechanicsp. 617
A.8.1 Spacecraft Dynamicsp. 617
A.8.2 Orbital Mechanicsp. 619
A.9 Inertial Navigation Systemsp. 624
A.9.1 Coordinate Definitions and Earth Modelp. 624
A.9.2 GPS Satellitesp. 628
A.9.3 Simulation of Sensorsp. 630
A.9.4 INS Equationsp. 633
A.10 Aircraft Flight Dynamicsp. 635
A.11 Vibrationp. 638
A.12 Summaryp. 644
B Matrix Propertiesp. 661
B.1 Basic Definitions of Matricesp. 661
B.2 Vectorsp. 666
B.3 Matrix Norms and Definitenessp. 670
B.4 Matrix Decompositionsp. 672
B.5 Matrix Calculusp. 677
C Basic Probability Conceptsp. 681
C.l Functions of a Single Discrete-Valued Random Variablep. 681
C.2 Functions of Discrete-Valued Random Variablesp. 685
C.3 Functions of Continuous Random Variablesp. 687
C.4 Stochastic Processesp. 689
C.5 Gaussian Random Variablesp. 690
C.5.1 Joint and Conditional Gaussian Casep. 691
C.5.2 Probability Inside a Quadratic Hypersurfacep. 692
C.6 Chi-Square Random Variablesp. 694
C.7 Wiener Processp. 695
C.8 Propagation of Functions through Various Modelsp. 700
C.8.1 Linear Matrix Modelsp. 700
C.8.2 Nonlinear Modelsp. 701
C.9 Scalar and Matrix Expectationsp. 703
C.10 Random Sampling from a Covariance Matrixp. 704
D Parameter Optimization Methodsp. 709
D.l Unconstrained Extremap. 709
D.2 Equality Constrained Extremap. 711
D.3 Nonlinear Unconstrained Optimizationp. 716
D.3.1 Some Geometrical Insightsp. 717
D.3.2 Methods of Gradientsp. 718
D.3.3 Second-Order (Gauss-Newton) Algorithmp. 720
E Computer Softwarep. 725
Indexp. 727
Go to:Top of Page