Skip to:Content
|
Bottom
Cover image for Optimal estimation of dynamic systems
Title:
Optimal estimation of dynamic systems
Personal Author:
Publication Information:
Boca Raton : Chapman & Hall/CRC, 2004
ISBN:
9781584883913
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010088306 QA402 C73 2004 Open Access Book Book
Searching...
Searching...
30000010258164 QA402 C73 2004 Open Access Book Book
Searching...
Searching...
30000010088305 QA402 C73 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation.

Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals received are used to determine highly sensitive processes such as the flight path of a plane, the orbit of a space vehicle, or the control of a machine. The authors use dynamic models from mechanical and aerospace engineering to provide immediate results of estimation concepts with a minimal reliance on mathematical skills. The book documents the development of the central concepts and methods of optimal estimation theory in a manner accessible to engineering students, applied mathematicians, and practicing engineers. It includes rigorous theoretial derivations and a significant amount of qualitiative discussion and judgements. It also presents prototype algorithms, giving detail and discussion to stimulate development of efficient computer programs and intelligent use of them.

This book illustrates the application of optimal estimation methods to problems with varying degrees of analytical and numercial difficulty. It compares various approaches to help develop a feel for the absolute and relative utility of different methods, and provides many applications in the fields of aerospace, mechanical, and electrical engineering.


Table of Contents

1 Least Squares Approximationp. 1
1.1 A Curve Fitting Examplep. 2
1.2 Linear Batch Estimationp. 7
1.2.1 Linear Least Squaresp. 9
1.2.2 Weighted Least Squaresp. 14
1.2.3 Constrained Least Squaresp. 15
1.3 Linear Sequential Estimationp. 18
1.4 Nonlinear Least Squares Estimationp. 24
1.5 Basis Functionsp. 34
1.6 Advanced Topicsp. 40
1.6.1 Matrix Decompositions in Least Squaresp. 40
1.6.2 Kronecker Factorization and Least Squaresp. 44
1.6.3 Levenberg-Marquardt Methodp. 48
1.6.4 Projections in Least Squaresp. 50
1.7 Summaryp. 52
2 Probability Concepts in Least Squaresp. 63
2.1 Minimum Variance Estimationp. 63
2.1.1 Estimation without a priori State Estimatesp. 64
2.1.2 Estimation with a priori State Estimatesp. 68
2.2 Unbiased Estimatesp. 74
2.3 Maximum Likelihood Estimationp. 75
2.4 Cramer-Rao Inequalityp. 81
2.5 Nonuniqueness of the Weight Matrixp. 86
2.6 Bayesian Estimationp. 89
2.7 Advanced Topicsp. 96
2.7.1 Analysis of Covariance Errorsp. 97
2.7.2 Ridge Estimationp. 99
2.7.3 Total Least Squaresp. 103
2.8 Summaryp. 107
3 Review of Dynamical Systemsp. 119
3.1 Linear System Theoryp. 119
3.1.1 The State Space Approachp. 120
3.1.2 Homogeneous Linear Dynamical Systemsp. 123
3.1.3 Forced Linear Dynamical Systemsp. 127
3.1.4 Linear State Variable Transformationsp. 129
3.2 Nonlinear Dynamical Systemsp. 132
3.3 Parametric Differentiationp. 135
3.4 Observabilityp. 137
3.5 Discrete-Time Systemsp. 140
3.6 Stability of Linear and Nonlinear Systemsp. 143
3.7 Attitude Kinematics and Rigid Body Dynamicsp. 149
3.7.1 Attitude Kinematicsp. 149
3.7.2 Rigid Body Dynamicsp. 155
3.8 Spacecraft Dynamics and Orbital Mechanicsp. 157
3.8.1 Spacecraft Dynamicsp. 157
3.8.2 Orbital Mechanicsp. 159
3.9 Aircraft Flight Dynamicsp. 164
3.10 Vibrationp. 168
3.11 Summaryp. 173
4 Parameter Estimation: Applicationsp. 189
4.1 Global Positioning System Navigationp. 189
4.2 Attitude Determinationp. 194
4.2.1 Vector Measurement Modelsp. 194
4.2.2 Maximum Likelihood Estimationp. 197
4.2.3 Optimal Quaternion Solutionp. 198
4.2.4 Information Matrix Analysisp. 202
4.3 Orbit Determinationp. 205
4.4 Aircraft Parameter Identificationp. 213
4.5 Eigensystem Realization Algorithmp. 219
4.6 Summaryp. 226
5 Sequential State Estimationp. 243
5.1 A Simple First-Order Filter Examplep. 244
5.2 Full-Order Estimatorsp. 246
5.2.1 Discrete-Time Estimatorsp. 250
5.3 The Discrete-Time Kalman Filterp. 251
5.3.1 Kalman Filter Derivationp. 252
5.3.2 Stability and Joseph's Formp. 256
5.3.3 Information Filter and Sequential Processingp. 259
5.3.4 Steady-State Kalman Filterp. 260
5.3.5 Correlated Measurement and Process Noisep. 263
5.3.6 Orthogonality Principlep. 265
5.4 The Continuous-Time Kalman Filterp. 270
5.4.1 Kalman Filter Derivation in Continuous Timep. 270
5.4.2 Kalman Filter Derivation from Discrete Timep. 273
5.4.3 Stabilityp. 277
5.4.4 Steady-State Kalman Filterp. 277
5.4.5 Correlated Measurement and Process Noisep. 282
5.5 The Continuous-Discrete Kalman Filterp. 283
5.6 Extended Kalman Filterp. 285
5.7 Advanced Topicsp. 292
5.7.1 Factorization Methodsp. 292
5.7.2 Colored-Noise Kalman Filteringp. 297
5.7.3 Consistency of the Kalman Filterp. 301
5.7.4 Adaptive Filteringp. 304
5.7.5 Error Analysisp. 308
5.7.6 Unscented Filteringp. 310
5.7.7 Robust Filteringp. 316
5.8 Summaryp. 320
6 Batch State Estimationp. 343
6.1 Fixed-Interval Smoothingp. 344
6.1.1 Discrete-Time Formulationp. 344
6.1.2 Continuous-Time Formulationp. 357
6.1.3 Nonlinear Smoothingp. 367
6.2 Fixed-Point Smoothingp. 370
6.2.1 Discrete-Time Formulationp. 371
6.2.2 Continuous-Time Formulationp. 376
6.3 Fixed-Lag Smoothingp. 378
6.3.1 Discrete-Time Formulationp. 379
6.3.2 Continuous-Time Formulationp. 382
6.4 Advanced Topicsp. 385
6.4.1 Estimation/Control Dualityp. 385
6.4.2 Innovations Processp. 394
6.5 Summaryp. 401
7 Estimation of Dynamic Systems: Applicationsp. 411
7.1 GPS Position Estimationp. 411
7.1.1 GPS Coordinate Transformationsp. 411
7.1.2 Extended Kalman Filter Application to GPSp. 415
7.2 Attitude Estimationp. 419
7.2.1 Multiplicative Quaternion Formulationp. 419
7.2.2 Discrete-Time Attitude Estimationp. 425
7.2.3 Murrell's Versionp. 427
7.2.4 Farrenkopf's Steady-State Analysisp. 431
7.3 Orbit Estimationp. 433
7.4 Target Tracking of Aircraftp. 435
7.4.1 The [alpha]-[beta] Filterp. 435
7.4.2 The [alpha]-[beta]-[gamma] Filterp. 443
7.4.3 Aircraft Parameter Estimationp. 447
7.5 Smoothing with the Eigensystem Realization Algorithmp. 452
7.6 Summaryp. 456
8 Optimal Control and Estimation Theoryp. 471
8.1 Calculus of Variationsp. 472
8.2 Optimization with Differential Equation Constraintsp. 477
8.3 Pontryagin's Optimal Control Necessary Conditionsp. 479
8.4 Discrete-Time Controlp. 485
8.5 Linear Regulator Problemsp. 487
8.5.1 Continuous-Time Formulationp. 488
8.5.2 Discrete-Time Formulationp. 494
8.6 Linear Quadratic-Gaussian Controllersp. 498
8.6.1 Continuous-Time Formulationp. 499
8.6.2 Discrete-Time Formulationp. 503
8.7 Loop Transfer Recoveryp. 506
8.8 Spacecraft Control Designp. 511
8.9 Summaryp. 517
A Matrix Propertiesp. 533
A.1 Basic Definitions of Matricesp. 533
A.2 Vectorsp. 538
A.3 Matrix Norms and Definitenessp. 542
A.4 Matrix Decompositionsp. 544
A.5 Matrix Calculusp. 548
B Basic Probability Conceptsp. 553
B.1 Functions of a Single Discrete-Valued Random Variablep. 553
B.2 Functions of Discrete-Valued Random Variablesp. 557
B.3 Functions of Continuous Random Variablesp. 559
B.4 Gaussian Random Variablesp. 561
B.5 Chi-Square Random Variablesp. 563
B.6 Propagation of Functions through Various Modelsp. 565
B.6.1 Linear Matrix Modelsp. 565
B.6.2 Nonlinear Modelsp. 565
C Parameter Optimization Methodsp. 569
C.1 Unconstrained Extremap. 569
C.2 Equality Constrained Extremap. 571
C.3 Nonlinear Unconstrained Optimizationp. 576
C.3.1 Some Geometrical Insightsp. 577
C.3.2 Methods of Gradientsp. 578
C.3.3 Second-Order (Gauss-Newton) Algorithmp. 580
D Computer Softwarep. 585
Indexp. 587
Go to:Top of Page