Cover image for ESR spectroscopy in membrane biophysics
Title:
ESR spectroscopy in membrane biophysics
Series:
Biological magnetic resonance ; v. 27
Publication Information:
New York, NY : Springer, 2007
Physical Description:
1 CD-ROM ;12 cm.
ISBN:
9780387250663
General Note:
Accompanies text with the same title : ( QP552 .M44 E87 2007 )

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010179844 CP 014879 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

Spectroscopic methods are not only important as an analytical tool, they also provide information about fundamental physical and chemical properties of molecules, the molecular and electronic structure, and the dynamic behaviour of molecules. Starting from a comprehensive quantum mechanical description, ESR Spectroscopy in Membrane Biophysics introduces the optical (IR, Raman, UV/Vis, CD, fluorescence and laser spectroscopy) and magnetic resonance (1D and 2D-NMR, ESR) techniques.

ESR Spectroscopy in Membrane Biophysics is a timely review of the increasing interest in using spin-label ESR as an alternative structural technique for NMR or X-ray diffraction. It is aimed at training an audience to learn ESR spectroscopy to determine membrane protein structures, conformational dynamics and protein-lipid interaction.


Author Notes

Dr. Marcus A. Hemminga is an Associate Professor in Molecular Biophysics at Wageningen University
Dr. Lawrence J. Berliner is currently Professor and Chair of the Department of Chemistry and Biochemistry at the University of Denver


Table of Contents

Forewordp. vii
Prefacep. ix
Chapter 1 Introduction and Future of Site-Directed Spin Labeling of Membrane ProteinsMarcus A. Hemminga
1 Structural Biology and Proteomicsp. 1
2 Membrane Proteins: Production and Reconstitution Challengesp. 2
3 SDSL-ESRp. 2
4 Cysteine Modificationp. 3
5 Structure and Dynamics Information from SDSL-ESRp. 4
6 Pulsed ESR Spectroscopyp. 6
7 High-Field ESR Spectroscopyp. 8
8 Molecular Dynamics Simulationsp. 9
9 Spectral Simulation and Analysisp. 11
10 Comparison with Site-Directed Fluorescence Labelingp. 11
11 Futurep. 13
Chapter 2 Instrumentation and Experimental SetupGunnar Jeschke
1 Continuous-Wave ESRp. 18
2 Basics of Pulsed ESRp. 25
3 Pulsed ENDORp. 31
4 Pulsed ELDOR (DEER)p. 39
5 Acknowledgmentsp. 43
6 Problemsp. 44
7 Answersp. 44
Chapter 3 Advanced ESR Spectroscopy in Membrane BiophysicsJanez Strancar
1 Introductionp. 49
2 Motional Averaging in a Spin-Labeled Biomembranep. 55
3 Strategies for Calculating Powder Spectrap. 66
4 Solving an Inverse Problem and Condensation of Resultsp. 77
5 Appendixp. 89
Chapter 4 Practical Pulsed Dipolar ESR (DEER)Piotr G. Fajer and Louise Brown and Likai Song
1 DEER Signalp. 95
2 Practical DEERp. 104
3 Applicationsp. 113
Chapter 5 Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESREnrica Bordignon and Heinz-Jurgen Steinhoff
1 Introductionp. 129
2 Spin Labelingp. 130
3 Structural Information Derived from ESR Spectra Analysisp. 133
4 Detection of Conformational Changesp. 155
Chapter 6 High-Field ESR Spectroscopy in Membrane and Protein BiophysicsTatyana I. Smirnova and Alex I. Smirnov
1 Introductionp. 165
2 Analysis of High-Field ESR Spectra of Spin Labelsp. 166
3 High-Field ESR of Spin-Labeled Aqueous Samples: Experimental Considerationsp. 193
4 High-field ESR in Studies of Molecular Dynamicsp. 204
5 High-field ESR in Studies of Molecular Structurep. 215
6 Characterization of the Nitroxide Microenvironment by High-Field ESRp. 223
7 Perspectivesp. 234
Appendices: Software Descriptions
Appendix 1 Molecular Modeling of Spin LabelsMikolai I. Fajer and Kenneth L. Sale and Piotr G. Fajer
1 System Requirementsp. 254
2 Preparation of Structuresp. 254
3 Simulationsp. 255
4 Analysis of Nitroxide Trajectoriesp. 256
5 Force Fieldsp. 256
6 Spin Label Topologiesp. 257
Appendix 2 SIMPOW6: A Software Package for the Simulation of ESR Powder-Type SpectraMark J. Nilges and Karen Mattson and R. Linn Belford
1 Introductionp. 261
2 Spin Hamiltonian for SIMP0W6p. 262
3 Calculation of Resonance Fieldsp. 263
4 Lineshapesp. 264
5 Intensity (Transition Moment)p. 266
6 Generation (Integration) of a Powder Spectrump. 266
7 Spectral Optimizationp. 267
8 Summary of Input Parametersp. 268
9 Running the Programp. 268
10 Examplesp. 270
11 Appendix A: Format of the Input Files: Spin Hamiltonian Parametersp. 276
12 Appendix B: Format of the Input Files: Optimization Parameters and Controlp. 279
13 Appendix C: Format of the Output Simulation Filesp. 280
Appendix 3 ACERT Software: Simulation and Analysis of ESR SpectraJack H. Freed
Appendix 4 DeerAnalysis 2006: Distance Measurements on Nanoscopic Length Scales by Pulse ESRGunnar Jeschke
Appendix 5 EWVoigt and EWVoigtn: Inhomogeneous Line Shape Simulation and Fitting ProgramsAlex I. Smirnov
1 Introductionp. 289
2 Convolution-Based Fitting of Continuous Wave EPR Spectrap. 289
3 Brief Description of EWVOIGT Capabilitiesp. 292
4 Convolution Algorithm with Levenberg-Marquardt Optimization for Fitting Inhomogeneous EPR Spectrap. 293
Appendix 6 EasySpin: Simulating cw ESR SpectraStefan Stoll and Arthur Schweiger
1 Introductionp. 299
2 Four Dynamic Regimes in cw ESRp. 300
3 Simulation of cw ESR Spectrap. 302
4 Other EasySpin functionsp. 316
Appendix 7 EPRSIM-C: A Spectral Analysis PackageJanez Strancar
1 Introductionp. 323
2 Main Characteristicsp. 325
3 EPRSIM-C Libraryp. 326
4 EPRSIM-C Programsp. 338
Contents of Previous Volumesp. 343
Indexp. 369