Cover image for Principles of biomechanics
Title:
Principles of biomechanics
Personal Author:
Series:
Mechanical engineering ; 213
Publication Information:
London : CRC Pr., 2009
Physical Description:
xxi, 430 p. : ill. ; 25 cm
ISBN:
9780849334948

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010184499 QP301 H87 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Research and study in biomechanics has grown dramatically in recent years, to the extent that students, researchers, and practitioners in biomechanics now outnumber those working in the underlying discipline of mechanics itself. Filling a void in the current literature on this specialized niche, Principles of Biomechanics provides readers with a solid grasp of the fundamentals and the enabling procedures of this rapidly expanding field, placing a sharp focus on dynamic phenomena in the area of whole-body biomechanics.

Applies Biodynamic Models to Everyday Activities

Emphasizing biodynamic modeling and the analysis of human body models, the book begins with a review of gross human anatomy and a summary of basic terminology. It describes various methods of analysis, including elementary mathematics, elementary mechanics, and the fundamental concepts of the mechanics of materials. Later chapters discuss the modeling of biosystems, tissue biomechanics, biodynamics, kinematics, kinetics, and the inertial properties of human body models. The book concludes with a review of sample applications of biodynamic models in activities such as lifting, maneuvering in space, walking, and swimming, as well as crash victim simulation.

Uses simple language to convey complex principles

With numerous professionals in a range of areas entering this field daily, there is a pressing need for a book which captures for a wide audience the principles of biomechanics analysis. Readily accessible to those with only a basic background in engineering fundamentals, mathematics, and physics, this text enables readers to understand virtually all areas of human body dynamics ranging from simple movements to optimal motions to accident victim dynamics.


Author Notes

Huston\, Ronald


Table of Contents

Prefacep. xix
Authorp. xxi
Chapter 1 Introductionp. 1
1.1 Principal Areas of Biomechanicsp. 1
1.2 Approach in This Bookp. 2
Referencesp. 2
Chapter 2 Review of Human Anatomy and Some Basic Terminologyp. 7
2.1 Gross (Whole-Body) Modelingp. 7
2.2 Position and Direction Terminologyp. 10
2.3 Terminology for Common Movementsp. 14
2.4 Skeletal Anatomyp. 19
2.5 Major Jointsp. 22
2.6 Major Muscle Groupsp. 23
2.7 Anthropometric Datap. 24
Referencesp. 26
Chapter 3 Methods of Analysis I: Review of Vectors, Dyadics, Matrices, and Determinantsp. 29
3.1 Vectorsp. 29
3.2 Vector Algebra: Addition and Multiplication by Scalarsp. 30
3.2.1 Vector Characteristicsp. 30
3.2.2 Equality of Vectorsp. 30
3.2.3 Special Vectorsp. 30
3.2.4 Multiplication of Vectors and Scalarsp. 31
3.2.5 Vector Additionp. 32
3.2.6 Addition of Perpendicular Vectorsp. 33
3.2.7 Use of Index and Summation Notationsp. 36
3.3 Vector Algebra: Multiplication of Vectorsp. 37
3.3.1 Angle between Vectorsp. 37
3.3.2 Scalar Productp. 37
3.3.3 Vector Productp. 39
3.3.4 Dyadic Productp. 41
3.4 Dyadicsp. 42
3.4.1 Zero Dyadicp. 42
3.4.2 Identity Dyadicp. 42
3.4.3 Dyadic Transposep. 43
3.4.4 Symmetric Dyadicsp. 43
3.4.5 Multiplication of Dyadicsp. 43
3.4.6 Inverse Dyadicsp. 44
3.4.7 Orthogonal Dyadicsp. 44
3.5 Multiple Products of Vectorsp. 44
3.5.1 Scalar Triple Productp. 45
3.5.2 Vector Triple Productp. 46
3.5.3 Dyadic/Vector Productp. 47
3.5.4 Other Multiple Productsp. 48
3.6 Matrices/Arraysp. 48
3.6.1 Zero Matricesp. 49
3.6.2 Identity Matricesp. 49
3.6.3 Matrix Transposep. 49
3.6.4 Equal Matricesp. 49
3.6.5 Symmetric Matricesp. 49
3.6.6 Skew-Symmetric Matricesp. 50
3.6.7 Diagonal Matrixp. 50
3.6.8 Matrix Measuresp. 50
3.6.9 Singular Matricesp. 50
3.6.10 Multiplication of Matrices by Scalarsp. 50
3.6.11 Addition of Matricesp. 50
3.6.12 Multiplication of Matricesp. 51
3.6.13 Inverse Matricesp. 51
3.6.14 Orthogonal Matricesp. 52
3.6.15 Submatricesp. 52
3.6.16 Rankp. 52
3.6.17 Partitioning of Matrices, Block-Multiplicationp. 52
3.6.18 Pseudoinversep. 53
3.7 Determinantsp. 53
3.8 Relationship of 3 x 3 Determinants, Permutation Symbols, and Kronecker Delta Functionsp. 55
3.9 Eigenvalues, Eigenvectors, and Principal Directionsp. 59
3.10 Maximum and Minimum Eigenvalues and the Associated Eigenvectorsp. 65
Referencesp. 66
Bibliographyp. 66
Chapter 4 Methods of Analysis II: Forces and Force Systemsp. 69
4.1 Forces: Vector Representationsp. 69
4.2 Moments of Forcesp. 69
4.3 Moments of Forces about Linesp. 70
4.4 Systems of Forcesp. 71
4.5 Special Force Systemsp. 73
4.5.1 Zero Force Systemsp. 73
4.5.2 Couplesp. 74
4.5.3 Equivalent Force Systemsp. 74
4.5.4 Superimposed and Negative Force Systemsp. 77
4.6 Principle of Action-Reactionp. 77
Referencesp. 78
Chapter 5 Methods of Analysis III: Mechanics of Materialsp. 79
5.1 Concepts of Stressp. 79
5.2 Concepts of Strainp. 84
5.3 Principal Values of Stress and Strainp. 88
5.4 A Two-Dimensional Example: Mohr's Circlep. 89
5.5 Elementary Stress-Strain Relationsp. 94
5.6 General Stress-Strain (Constitutive) Relationsp. 97
5.7 Equations of Equilibrium and Compatibilityp. 99
5.8 Use of Curvilinear Coordinatesp. 102
5.8.1 Cylindrical Coordinatesp. 102
5.8.2 Spherical Coordinatesp. 103
5.9 Review of Elementary Beam Theoryp. 105
5.9.1 Sign Conventionp. 105
5.9.2 Equilibrium Considerationp. 106
5.9.3 Strain-Curvature Relationsp. 107
5.9.4 Stress-Bending Moment Relationsp. 109
5.9.5 Summary of Governing Equationsp. 110
5.10 Thick Beamsp. 111
5.11 Curved Beamsp. 114
5.12 Singularity Functionsp. 115
5.13 Elementary Illustrative Examplesp. 117
5.13.1 Cantilever Beam with a Concentrated End Loadp. 117
5.13.2 Cantilever Beam with a Concentrated End Load on the Right Endp. 120
5.13.3 Simply Supported Beam with a Concentrated Interior Span Loadp. 122
5.13.4 Simply Supported Beam with Uniform Loadp. 125
5.14 Listing of Selected Beam Displacement and Bending Moment Resultsp. 128
5.15 Magnitude of Transverse Shear Stressp. 129
5.16 Torsion of Barsp. 130
5.17 Torsion of Members with Noncircular and Thin-Walled Cross Sectionsp. 132
5.18 Energy Methodsp. 133
Referencesp. 139
Chapter 6 Methods of Analysis IV: Modeling of Biosystemsp. 141
6.1 Multibody (Lumped Mass) Systemsp. 141
6.2 Lower Body Arraysp. 142
6.3 Whole Body, Head/Neck, and Hand Modelsp. 146
6.4 Gross-Motion Modeling of Flexible Systemsp. 150
Referencesp. 151
Chapter 7 Tissue Biomechanicsp. 153
7.1 Hard and Soft Tissuep. 153
7.2 Bonesp. 154
7.3 Bone Cells and Microstructurep. 154
7.4 Physical Properties of Bonep. 155
7.5 Bone Development (Wolff's law)p. 156
7.6 Bone Failure (Fracture and Osteoporosis)p. 157
7.7 Muscle Tissuep. 158
7.8 Cartilagep. 159
7.9 Ligaments/Tendonsp. 160
7.10 Scalp, Skull, and Brain Tissuep. 161
7.11 Skin Tissuep. 162
Referencesp. 163
Chapter 8 Kinematical Preliminaries: Fundamental Equationsp. 165
8.1 Points, Particles, and Bodiesp. 165
8.2 Particle, Position, and Reference Framesp. 166
8.3 Particle Velocityp. 166
8.4 Particle Accelerationp. 167
8.5 Absolute and Relative Velocity and Accelerationp. 169
8.6 Vector Differentiation, Angular Velocityp. 171
8.7 Two Useful Kinematic Proceduresp. 176
8.7.1 Differentiation in Different Reference Framesp. 176
8.7.2 Addition Theorem for Angular Velocityp. 178
8.8 Configuration Graphsp. 180
8.9 Use of Configuration Graphs to Determine Angular Velocityp. 190
8.10 Application with Biosystemsp. 192
8.11 Angular Accelerationp. 195
8.12 Transformation Matrix Derivativesp. 197
8.13 Relative Velocity and Acceleration of Two Points Fixed on a Bodyp. 199
8.14 Singularities Occurring with Angular Velocity Components and Orientation Anglesp. 200
8.15 Rotation Dyadicsp. 201
8.16 Euler Parametersp. 206
8.17 Euler Parameters and Angular Velocityp. 208
8.18 Inverse Relations between Angular Velocity and Euler Parametersp. 210
8.19 Numerical Integration of Governing Dynamical Equationsp. 212
Referencesp. 213
Chapter 9 Kinematic Preliminaries: Inertia Force Considerationsp. 215
9.1 Applied Forces and Inertia Forcesp. 215
9.2 Mass Centerp. 217
9.3 Equivalent Inertia Force Systemsp. 221
Chapter 10 Human Body Inertia Propertiesp. 225
10.1 Second Moment Vectors, Moments, and Products of Inertiap. 225
10.2 Inertia Dyadicsp. 229
10.3 Sets of Particlesp. 230
10.4 Body Segmentsp. 232
10.5 Parallel Axis Theoremp. 234
10.6 Eigenvalues of Inertia: Principal Directionsp. 237
10.7 Eigenvalues of Inertia: Symmetrical Bodiesp. 241
10.8 Application with Human Body Modelsp. 243
Referencesp. 256
Chapter 11 Kinematics of Human Body Modelsp. 257
11.1 Notation, Degrees of Freedom, and Coordinatesp. 257
11.2 Angular Velocitiesp. 261
11.3 Generalized Coordinatesp. 266
11.4 Partial Angular Velocitiesp. 268
11.5 Transformation Matrices: Recursive Formulationp. 270
11.6 Generalized Speedsp. 273
11.7 Angular Velocities and Generalized Speedsp. 276
11.8 Angular Accelerationp. 279
11.9 Mass Center Positionsp. 282
11.10 Mass Center Velocitiesp. 288
11.11 Mass Center Accelerationsp. 290
11.12 Summary: Human Body Model Kinematicsp. 291
Referencesp. 293
Chapter 12 Kinetics of Human Body Modelsp. 295
12.1 Applied (Active) and Inertia (Passive) Forcesp. 295
12.2 Generalized Forcesp. 297
12.3 Generalized Applied (Active) Forces on a Human Body Modelp. 299
12.4 Forces Exerted across Articulating Jointsp. 300
12.4.1 Contact Forces across Jointsp. 301
12.4.2 Ligament and Tendon Forcesp. 302
12.4.3 Joint Articulation Momentsp. 304
12.5 Contribution of Gravity (Weight) Forces to the Generalized Active Forcesp. 306
12.6 Generalized Inertia Forcesp. 307
Referencesp. 309
Chapter 13 Dynamics of Human Body Modelsp. 311
13.1 Kane's Equationsp. 311
13.2 Generalized Forces for a Human Body Modelp. 312
13.3 Dynamical Equationsp. 313
13.4 Formulation for Numerical Solutionsp. 314
13.5 Constraint Equationsp. 317
13.6 Constraint Forcesp. 319
13.7 Constrained System Dynamicsp. 322
13.8 Determination of Orthogonal Complement Arraysp. 324
13.9 Summaryp. 325
Referencesp. 327
Chapter 14 Numerical Methodsp. 329
14.1 Governing Equationsp. 329
14.2 Numerical Development of the Governing Equationsp. 331
14.3 Outline of Numerical Proceduresp. 332
14.4 Algorithm Accuracy and Efficiencyp. 333
Referencesp. 335
Chapter 15 Simulations and Applicationsp. 337
15.1 Review of Human Modeling for Dynamic Simulationp. 337
15.2 A Human Body in Free-Space: A "Spacewalk"p. 339
15.2.1 X-Axis (Yaw) Rotationp. 340
15.2.2 Y-Axis (Pitch) Rotationp. 340
15.2.3 Z-Axis (Roll) Rotationp. 341
15.3 A Simple Weight Liftp. 342
15.4 Walkingp. 344
15.4.1 Terminologyp. 345
15.4.2 Modeling/Simulationp. 345
15.4.3 Resultsp. 346
15.5 Swimmingp. 347
15.5.1 Modeling the Water Forcesp. 347
15.5.2 Limb Motion Specificationp. 348
15.5.3 Kick Strokesp. 349
15.5.4 Breast Strokep. 350
15.5.5 Commentsp. 350
15.6 Crash Victim Simulation I: Modelingp. 350
15.7 Crash Victim Simulation II: Vehicle Environment Modelingp. 351
15.8 Crash Victim Simulation III: Numerical Analysisp. 353
15.9 Burden Bearing-Waiter/Tray Simulationsp. 354
15.9.1 Heavy Hanging Cablep. 354
15.9.2 Uniform Muscle Stress Criterionp. 356
15.9.3 Waitron/Tray Analysisp. 357
15.10 Other Applicationsp. 359
15.10.1 Load Sharing between Muscle Groupsp. 360
15.10.2 Transition Movementsp. 361
15.10.3 Gyroscopic Effects in Walkingp. 361
15.10.4 Neck Injuries in Rollover Motor Vehicle Accidentsp. 362
Referencesp. 362
Appendix Anthropometric Data Tablesp. 367
Glossaryp. 403
Bibliographyp. 415
Indexp. 419