Skip to:Content
|
Bottom
Cover image for Nanostructures & nanomaterials : synthesis, properties, and applications
Title:
Nanostructures & nanomaterials : synthesis, properties, and applications
Personal Author:
Series:
World scientific series in nanoscience and nanotechnology ; v. 2
Edition:
2nd ed.
Publication Information:
New Jersey, NJ. : World Scientific, c2011.
Physical Description:
xiii, 581 p. : ill. (some col.) ; 24 cm.
ISBN:
9789814322508
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010297335 QC176.8.N35 C36 2011 Open Access Book Book
Searching...
Searching...
30000010265238 QC176.8.N35 C36 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

This is the 2nd edition of the original "Nanostructures and Nanomaterials" written by Guozhong Cao and published by Imperial College Press in 2004.This important book focuses not only on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.


Table of Contents

Preface to the Second Editionp. v
Chapter 1 Introductionp. 1
1.1 Introductionp. 1
1.2 Emergence of Nanotechnologyp. 4
1.3 Bottom-Up and Top-Down Approachesp. 8
1.4 Challenges in Nanotechnologyp. 10
1.5 Scope of the Bookp. 13
Referencesp. 15
Chapter 2 Physical Chemistry of Solid Surfacesp. 19
2.1 Introductionp. 19
2.2 Surface Energyp. 21
2.3 Chemical Potential as a Function of Surface Curvaturep. 32
2.4 Electrostatic Stabilizationp. 38
2.4.1 Surface charge densityp. 38
2.4.2 Electric potential at the proximity of solid surfacep. 39
2.4.3 Van der Waals attraction potentialp. 43
2.4.4 Interactions between two particles: DLVO theoryp. 45
2.5 Steric Stabilizationp. 50
2.5.1 Solvent and polymerp. 51
2.5.2 Interactions between polymer layersp. 53
2.5.3 Mixed steric and electric interactionsp. 57
2.6 Summaryp. 57
Referencesp. 57
Chapter 3 Zero-Dimensional Nanostructures: Nanoparticlesp. 61
3.1 Introductionp. 61
3.2 Nanoparticles Through Homogeneous Nucleationp. 63
3.2.1 Fundamentals of homogeneous nucleationp. 63
3.2.2 Subsequent growth of nucleip. 69
3.2.2.1 Growth controlled by diffusionp. 70
3.2.2.2 Growth controlled by surface processp. 71
3.2.3 Synthesis of metallic nanoparticlesp. 75
3.2.3.1 Influences of reduction reagentsp. 80
3.2.3.2 Influences by other factorsp. 83
3.2.3.3 Influences of polymer stabilizerp. 86
3.2.4 Synthesis of semiconductor nanoparticlesp. 93
3.2.5 Synthesis of oxide nanoparticlesp. 102
3.2.5.1 Introduction to sol-gel processingp. 102
3.2.5.2 Forced hydrolysisp. 106
3.2.5.3 Controlled release of ionsp. 108
3.2.6 Vapor phase reactionsp. 110
3.2.7 Solid-state phase segregationp. 112
3.3 Nanoparticles Through Heterogeneous Nucleationp. 116
3.3.1 Fundamentals of heterogeneous nucleationp. 116
3.3.2 Synthesis of nanoparticlesp. 118
3.4 Kinetically Confined Synthesis of Nanoparticlesp. 119
3.4.1 Synthesis inside micelles or using microemulsionsp. 121
3.4.2 Aerosol synthesisp. 123
3.4.3 Growth terminationp. 124
3.4.4 Spray pyrolysisp. 126
3.4.5 Template-based synthesisp. 126
3.5 Epitaxial Core-Shell Nanoparticlesp. 127
3.6 Summaryp. 130
Referencesp. 131
Chapter 4 One-Dimensional Nanostructures: Nanowires and Nanorodsp. 143
4.1 Introductionp. 143
4.2 Spontaneous Growthp. 145
4.2.1 Evaporation (dissolution)-condensation growthp. 146
4.2.1.1 Fundamentals of evaporation (dissolution)-condensation growthp. 146
4.2.1.2 Evaporation-condensation growthp. 154
4.2.1.3 Dissolution-condensation growthp. 159
4.2.2 Vapor (or solution)-liquid-solid (VLS or SLS) growthp. 164
4.2.2.1 Fundamental aspects of VLS and SLS growthp. 164
4.2.2.2 VLS growth of various nanowiresp. 170
4.2.2.3 Control of the size of nanowiresp. 172
4.2.2.4 Precursors and catalystsp. 177
4.2.2.5 Solution-liquid-solid growthp. 180
4.2.3 Stress-induced recrystallizationp. 183
4.3 Template-Based Synthesisp. 183
4.3.1 Electrochemical depositionp. 184
4.3.2 Electrophoretic depositionp. 196
4.3.3 Template fillingp. 204
4.3.3.1 Colloidal dispersion fillingp. 204
4.3.3.2 Melt and solution fillingp. 206
4.3.3.3 Chemical vapor depositionp. 207
4.3.3.4 Deposition by centrifugationp. 207
4.3.4 Converting through chemical reactionsp. 208
4.4 Electrospinningp. 213
4.5 Lithographyp. 215
4.6 Summaryp. 219
Referencesp. 219
Chapter 5 Two-Dimensional Nanostructures: Thin Filmsp. 229
5.1 Introductionp. 229
5.2 Fundamentals of Film Growthp. 230
5.3 Vacuum Sciencep. 235
5.4 Physical Vapor Deposition (PVD)p. 240
5.4.1 Evaporationp. 240
5.4.2 Molecular beam epitaxy (MBE)p. 243
5.4.3 Sputteringp. 245
5.4.4 Comparison of evaporation and sputteringp. 247
5.5 Chemical Vapor Deposition (CVD)p. 248
5.5.1 Typical chemical reactionsp. 248
5.5.2 Reaction kineticsp. 251
5.5.3 Transport phenomenap. 251
5.5.4 CVD methodsp. 254
5.5.5 Diamond films by CVDp. 258
5.6 Atomic Layer Depositionp. 260
5.7 Superlatticesp. 265
5.8 Self-Assemblyp. 267
5.8.1 Monolayers of organosilicon or alkylsilane derivativesp. 270
5.8.2 Monolayers of alkanethiols and sulfidesp. 273
5.8.3 Monolayers of carboxylic acids, amines, and alcoholsp. 276
5.9 Langmuir-Blodgett Filmsp. 277
5.10 Electrochemical Depositionp. 282
5.11 Sol-Gel Filmsp. 284
5.12 Summaryp. 289
Referencesp. 289
Chapter 6 Special Nanomaterialsp. 297
6.1 Introductionp. 297
6.2 Carbon Fullerenes and Nanotubesp. 297
6.2.1 Carbon fullerenesp. 298
6.2.2 Fullerene-derived crystalsp. 300
6.2.3 Carbon nanotubesp. 300
6.3 Micro and Mesoporous Materialsp. 308
6.3.1 Ordered mesoporous structuresp. 308
6.3.2 Random mesoporous structuresp. 320
6.3.3 Crystalline microporous materials: Zeolitesp. 324
6.4 Core-Shell Structuresp. 333
6.4.1 Metal-oxide structuresp. 334
6.4.2 Metal-polymer structuresp. 336
6.4.3 Oxide-polymer nanostructuresp. 338
6.5 Organic-Inorganic Hybridsp. 339
6.5.1 Class 1 hybridsp. 340
6.5.2 Class 2 hybridsp. 341
6.6 Intercalation Compoundsp. 344
6.7 Nanocomposites and Nanograined Materialsp. 346
6.8 Inverse Opalsp. 350
6.9 Bio-Induced Nanomaterialsp. 353
6.10 Summaryp. 354
Referencesp. 354
Chapter 7 Nanostructures Fabricated by Physical Techniquesp. 369
7.1 Introductionp. 369
7.2 Lithographyp. 371
7.2.1 Photolithographyp. 371
7.2.2 Phase-shifting photolithographyp. 375
7.2.3 Electron beam lithographyp. 377
7.2.4 X-ray lithographyp. 379
7.2.5 Focused ion beam (FIB) lithographyp. 381
7.2.6 Neutral atomic beam lithographyp. 384
7.3 Nanomanipulation and Nanolithographyp. 386
7.3.1 Scanning tunneling microscopy (STM)p. 387
7.3.2 Atomic force microscopy (AFM)p. 389
7.3.3 Near-field scanning optical microscopy (NSOM)p. 391
7.3.4 Nanomanipulationp. 394
7.3.5 Nanolithographyp. 400
7.4 Soft Lithographyp. 405
7.4.1 Microcontact printingp. 405
7.4.2 Moldingp. 408
7.4.3 Nanoimprintp. 408
7.4.4 Dip-pen nanolithographyp. 411
7.5 Assembly of Nanoparticles and Nanowiresp. 412
7.5.1 Capillary forcesp. 413
7.5.2 Dispersion interactionsp. 416
7.5.3 Shear-force-assisted assemblyp. 417
7.5.4 Electric-field-assisted assemblyp. 418
7.5.5 Covalently linked assemblyp. 418
7.5.6 Gravitational-field-assisted assemblyp. 419
7.5.7 Template-assisted assemblyp. 419
7.6 Other Methods for Microfabricationp. 420
7.7 Summaryp. 422
Referencesp. 422
Chapter 8 Characterization and Properties of Nanomaterialsp. 433
8.1 Introductionp. 433
8.2 Structural Characterizationp. 434
8.2.1 X-ray diffraction (XRD)p. 435
8.2.2 Small angle X-ray scattering (SAXS)p. 436
8.2.3 Scanning electron microscopy (SEM)p. 441
8.2.4 Transmission electron microscopy (TEM)p. 444
8.2.5 Scanning probe microscopy (SPM)p. 445
8.2.6 Gas adsorptionp. 450
8.3 Chemical Characterizationp. 452
8.3.1 Optical spectroscopyp. 452
8.3.2 Electron spectroscopyp. 457
8.3.3 Ion spectrometryp. 459
8.4 Physical Properties of Nanomaterialsp. 461
8.4.1 Melting points and lattice constantsp. 462
8.4.2 Mechanical propertiesp. 467
8.4.3 Optical propertiesp. 472
8.4.3.1 Surface plasmon resonancep. 473
8.4.3.2 Quantum size effectsp. 478
8.4.4 Electrical conductivityp. 483
8.4.4.1 Surface scatteringp. 483
8.4.4.2 Change of electronic structurep. 488
8.4.4.3 Quantum transportp. 488
8.4.4.4 Effect of microstructurep. 492
8.4.5 Ferroelectrics and dielectricsp. 493
8.4.6 Superparamagnetismp. 496
8.5 Summaryp. 498
Referencesp. 499
Chapter 9 Applications of Nanomaterialsp. 509
9.1 Introductionp. 509
9.2 Molecular Electronics and Nanoelectronicsp. 510
9.3 Nanobotsp. 512
9.4 Biological Applications of Nanoparticlesp. 514
9.5 Catalysis by Gold Nanoparticlesp. 516
9.6 Bandgap Engineered Quantum Devicesp. 518
9.6.1 Quantum well devicesp. 518
9.6.2 Quantum dot devicesp. 521
9.7 Nanomechanicsp. 522
9.8 Carbon Nanotube Emittersp. 524
9.9 Energy Applications of Nanomaterialsp. 527
9.9.1 Photoelectrochemical cellsp. 527
9.9.2 Lithium-ion rechargeable batteriesp. 530
9.9.3 Hydrogen storagep. 535
9.9.4 Thermoelectricsp. 538
9.10 Environmental Applications of Nanomaterialsp. 540
9.11 Photonic Crystals and Plasmon Waveguidesp. 542
9.11.1 Photonic crystalsp. 542
9.11.2 Plasmon waveguidesp. 544
9.12 Summaryp. 546
Referencesp. 546
Appendicesp. 561
Indexp. 569
Go to:Top of Page