Skip to:Content
|
Bottom
Cover image for Fluid power circuits and controls : fundamentals and applications
Title:
Fluid power circuits and controls : fundamentals and applications
Personal Author:
Series:
Mechanical engineering series
Publication Information:
Boca Raton : CRC Press, 2002
ISBN:
9780849309243

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004522060 TJ840 C85 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Engineers not only need to understand the basics of how fluid power components work, but they must also be able to design these components into systems and analyze or model fluid power systems and circuits. There has long been a need for a comprehensive text on fluid power systems, written from an engineering perspective, which is suitable for an undergraduate-level course in fluid power.

Fluid Power Circuits and Controls: Fundamentals and Applications encourages students to think of the collection of components as a system. The author illustrates each concept with a circuit diagram, and as each component is discussed, immediately places it in a circuit and analyzes its performance. This approach allows students to immediately apply what they have learned and encourages them to think about how the component operating characteristics interact with the rest of the circuit.

Covering all aspects of the industry, this book:

Develops the basic concept for power delivery with fluids
Reviews basic concepts of fluid mechanics and discusses the key properties of the fluids
Discusses the creation and control of flow and the various methods used to control pressure in a circuit
Provides a detailed example of the classic problem of hydrostatic transmission design
Presents characteristics of auxiliary components and applicable SAE standards
Addresses pneumatics, focusing on the difference in power transmission for liquid and gas
Discusses servo valves and proportional valves without requiring a background in automatic controls

The text is richly illustrated, filled with fully worked example problems, and reinforced with exercises in each chapter. Fluid Power Circuits and Controls offers valuable design experience and the background its readers need to approach real-world fluid power problems with confidence.


Author Notes

John S. Cundiff: Virginia Polytechnic Institute and State University, Blacksburg


Table of Contents

Prefacep. v
1. Brief Overview of Fluid Powerp. 1
1.1 Introductionp. 1
1.2 Concept of Fluid Powerp. 1
1.2.1 Basic Circuitsp. 2
1.2.2 Basic Circuit Analysisp. 7
1.2.3 Efficiencyp. 10
1.3 Summaryp. 11
2. Fluid Power Basicsp. 15
2.1 Introductionp. 15
2.2 Fluid Staticsp. 16
2.2.1 Hydrostatic Pressurep. 16
2.2.2 Conservation of Massp. 22
2.3 Functions of a Working Fluidp. 24
2.4 Fluid Propertiesp. 26
2.4.1 Viscosityp. 26
2.4.2 Bulk Modulusp. 30
2.4.3 Specific Gravityp. 31
2.4.4 Other Fluid Propertiesp. 31
2.5 Flow in Linesp. 34
2.5.1 Reynolds Numberp. 35
2.5.2 Darcy's Equationp. 37
2.5.3 Losses in Fittingsp. 43
2.6 Leakage Flowp. 45
2.7 Orifice Equationp. 48
2.7.1 Analysis to Illustrate Use of Orifice Equationp. 50
2.7.2 Use of Orifice Equation to Analyze Pressure Reducing Valvep. 54
2.8 Summaryp. 61
A2.1 Data for Selected Hydraulic Fluidsp. 65
3. Pressure Controlp. 67
3.1 Introductionp. 67
3.2 Review of Needed Symbolsp. 68
3.3 Relief Valvep. 69
3.3.1 Direct-Acting Relief Valvep. 69
3.3.2 Pilot-Operated Relief Valvep. 75
3.3.3 Example Circuits Using Pilot-Operated Relief Valvesp. 77
3.4 Unloading Valvep. 81
3.5 Sequence Valve and Pressure-Reducing Valvep. 88
3.5.1 Sequence Valvep. 88
3.5.2 Pressure-Reducing Valvep. 89
3.6 Counterbalance Valve and Brake Valvep. 92
3.6.1 Counterbalance Valvep. 92
3.6.2 Brake Valvep. 94
3.7 Summaryp. 95
4. Creation and Control of Fluid Flowp. 101
4.1 Introductionp. 101
4.2 Fixed Displacement Pumpsp. 103
4.3 Fixed Displacement Pump Circuitsp. 104
4.4 Variable Displacement Pump Circuitsp. 109
4.4.1 Vane Pumpp. 110
4.4.2 Piston Pumpp. 114
4.4.3 Improvement in Efficiency with Load Sensingp. 117
4.5 Comparison of Pump Performance Characteristics for Three Main Designsp. 124
4.5.1 Gerotor Pumpp. 124
4.5.2 Vane Pumpp. 130
4.5.3 Axial Piston Pumpp. 132
4.6 Multiple Pump Circuitsp. 137
4.7 Pump Mountsp. 138
4.8 Flow Control Valvesp. 140
4.8.1 Flow Dividersp. 143
4.9 Circuits Using Flow Control Valvesp. 144
4.10 Summaryp. 146
5. Rotary Actuatorsp. 153
5.1 Introductionp. 153
5.2 Stall Torque Efficiencyp. 157
5.3 Typical Performance Data for a Gear Motorp. 159
5.4 Comparison of Motor Performance Characteristics for Three Main Designsp. 161
5.4.1 Gear Motorp. 161
5.4.2 Vane Motorp. 162
5.4.3 Piston Motorp. 162
5.5 Performance Characteristics of Low-Speed, High-Torque Motorsp. 164
5.5.1 Geroler Motor (Disc Valve)p. 164
5.5.2 Vane Motor (Low-Speed, High-Torque)p. 165
5.6 Design Example for Gear Motor Applicationp. 167
5.6.1 Functional Requirementsp. 168
5.6.2 Other Design Considerationsp. 168
5.7 Interaction of Pump and Motor Characteristicsp. 168
5.8 Bent Axis Motorsp. 172
5.8.1 Design Considerations for Bent Axis Motorsp. 175
5.8.2 Performance Advantage of Bent Axis Designp. 176
5.9 Radial Piston Motorsp. 179
5.10 Motor-Gearbox Combinationsp. 180
5.11 Oscillating Actuatorp. 183
5.12 Summaryp. 185
A5.1 Curve Fitting Techniquep. 187
6. Hydrostatic Transmissionsp. 193
6.1 Introductionp. 193
6.2 Mechanical Transmissionsp. 193
6.2.1 Torque Convertersp. 197
6.2.2 Shift Control of Automatic Transmissionp. 199
6.2.3 Summaryp. 201
6.3 Introduction to Hydrostatic Transmissionsp. 201
6.4 Hydrostatic Transmissions for Vehicle Propulsionp. 203
6.4.1 Comparison of Hydrostatic and Mechanical Drivesp. 203
6.4.2 Advantages of Hydrostatic Transmissionsp. 204
6.5 Different Configurations of Hydrostatic Transmissions to Propel Vehiclesp. 205
6.5.1 Hydrostatic Transmission with Two Wheel Motorsp. 205
6.5.2 Hydrostatic Transmission with Final Drivesp. 207
6.5.3 Hydrostatic Transmission with Variable Speed Motorsp. 210
6.5.4 Vehicle with Two Hydrostatic Transmissionsp. 210
6.5.5 Hydrostatic Drive for Three-Wheel Vehiclep. 212
6.5.6 Hydrostatic Transmission for Four-Wheel Drive Vehiclep. 212
6.5.7 Summaryp. 215
6.6 Classification of Hydrostatic Transmissionsp. 215
6.7 Closed-Circuit Hydrostatic Transmissionsp. 216
6.7.1 Charge Pumpp. 216
6.7.2 Shuttle Valvep. 219
6.7.3 Cross-Port Relief Valvesp. 221
6.7.4 Multipurpose Valvesp. 222
6.7.5 Summaryp. 222
6.8 Closed-Circuit, Closed-Loop Hydrostatic Transmissionsp. 223
6.8.1 Review of Pump and Motor Operating Characteristicsp. 223
6.8.2 Servo-Controlled Pumpp. 226
6.8.3 Servo Valve Circuitp. 229
6.8.4 Response Time for Closed-Loop Circuitp. 230
6.8.5 Operation of Closed-Circuit, Closed-Loop Hydrostatic Transmissionp. 231
6.9 Hydrostatic Transmission Designp. 232
6.9.1 Hydrostatic Drive for Sweet Sorghum Harvesterp. 234
6.9.2 Example Solution for Design of Hydrostatic Drive for Sweet Sorghum Harvesterp. 236
6.10 Summaryp. 251
A6.1 Basic Concepts in Tractionp. 253
A6.2 Selected Catalog Data for Hydrostatic Transmission Design Problemsp. 257
7. Linear Actuatorsp. 271
7.1 Introductionp. 271
7.2 Analysis of Cylinders in Parallel and Seriesp. 271
7.3 Synchronization of Cylindersp. 277
7.3.1 Orifice-Type Flow Dividerp. 279
7.3.2 Gear-Type Flow Dividerp. 279
7.3.3 Mechanical Couplingp. 279
7.4 Cushioningp. 280
7.5 Rephasing of Cylindersp. 281
7.6 Pressesp. 282
7.6.1 Pilot-Operated Check Valvep. 284
7.6.2 Load-Locking Circuitp. 286
7.7 Load Analysisp. 286
7.7.1 Analysis of Acceleration of a Load with a Cylinderp. 287
7.7.2 One Method for Incorporating the Influence of Various Factors during Acceleration Eventp. 294
7.8 Types of Cylindersp. 296
7.8.1 Cylinder Selectionp. 297
7.8.2 Cylinder Failurep. 297
7.9 Cylinder Constructionp. 301
7.10 Summaryp. 303
8. Temperature and Contamination Controlp. 311
8.1 Introductionp. 311
8.2 Temperature Controlp. 311
8.2.1 Methods for Cooling Hydraulic Oilp. 313
8.2.2 Heat Transfer from Reservoirp. 314
8.2.3 Heat Generated by the Systemp. 316
8.2.4 Design Examplep. 318
8.2.5 Temperature Control Summaryp. 324
8.3 Contamination Controlp. 325
8.3.1 Sources of Contaminationp. 325
8.3.2 Quantifying Fluid Cleanlinessp. 326
8.3.3 Effects of Contamination on Various Componentsp. 328
8.3.4 Setting a Target Cleanliness Levelp. 333
8.3.5 Achieving a Target Cleanliness Levelp. 335
8.3.6 Monitoring the System Cleanliness Levelp. 342
8.4 Summaryp. 342
9. Auxiliary Componentsp. 349
9.1 Introductionp. 349
9.2 Reservoirp. 349
9.2.1 Reservoir Constructionp. 350
9.3 Hydraulic Linesp. 354
9.3.1 Pipep. 355
9.3.2 Hydraulic Tubingp. 357
9.3.3 Hydraulic Hosep. 362
9.4 Fluid Velocity in Conductorsp. 365
9.5 Options for Connecting Componentsp. 368
9.5.1 Manifoldsp. 370
9.5.2 Quick-Disconnect Couplingp. 372
9.6 Installation of Linesp. 373
9.6.1 Recommended Practices for Hydraulic Hosep. 374
9.6.2 Environmental Issuesp. 374
9.7 Design Life of Componentsp. 375
9.8 System Integrationp. 378
9.8.1 Port Connectionsp. 379
9.8.2 Tube or Hose Connectionsp. 380
9.8.3 Assemblyp. 380
9.9 Summaryp. 380
A9.1 Selected Design Data for Fluid Conductorsp. 383
10. Pneumaticsp. 389
10.1 Introductionp. 389
10.2 Orifice Equationp. 390
10.3 Compressorsp. 392
10.3.1 Reciprocating Piston Compressorp. 392
10.3.2 Diaphragm Compressorp. 392
10.3.3 Sliding Vane Rotary Compressorp. 392
10.3.4 Coolingp. 392
10.4 Receiverp. 394
10.5 Pipelinesp. 394
10.6 Preparation of Compressed Airp. 394
10.6.1 Drying of Airp. 394
10.6.2 Air Filtrationp. 396
10.6.3 Pressure Regulationp. 397
10.6.4 Compressed Air Lubricationp. 398
10.6.5 Service Unitsp. 398
10.7 Cylindersp. 399
10.7.1 Single-Acting Cylindersp. 399
10.7.2 Diaphragm Cylinderp. 399
10.7.3 Rolling Diaphragm Cylindersp. 400
10.7.4 Double-Acting Cylindersp. 400
10.7.5 Impact Cylinderp. 401
10.7.6 Free Air Consumption by Cylindersp. 401
10.8 Motorsp. 403
10.8.1 Types of Pneumatic Motorsp. 403
10.8.2 Characteristics of Pneumatic Motorsp. 405
10.9 Additional Actuator Unitsp. 408
10.9.1 Cylinder with Mounted Air Control Blockp. 408
10.9.2 Hydropneumatic Feed Unitp. 408
10.9.3 Feed Unitp. 409
10.9.4 Rotary Index Tablep. 410
10.9.5 Air Cushion Sliding Tablep. 410
10.10 Valvesp. 411
10.10.1 Valve Symbolsp. 411
10.10.2 Valve Designp. 412
10.10.3 Poppet Valvesp. 412
10.10.4 Slide Valvesp. 413
10.10.5 Other Valvesp. 414
10.11 Summaryp. 415
A10.1 Standard Conditionsp. 417
11. Servo Valvesp. 421
11.1 Introductionp. 421
11.2 Conceptp. 422
11.2.1 Feedbackp. 425
11.2.2 Programmable Orificep. 426
11.2.3 Control of Pump Displacementp. 430
11.2.4 Basic Servo Systemsp. 430
11.3 Servo Valve Constructionp. 432
11.3.1 Torque Motorp. 432
11.3.2 Methods for Shifting Servo Valve Spoolp. 435
11.3.3 Valve Constructionp. 438
11.4 Valve Performancep. 440
11.4.1 Rated Flowp. 440
11.4.2 Pressure Dropp. 441
11.4.3 Internal Leakagep. 443
11.4.4 Hysteresisp. 443
11.4.5 Thresholdp. 443
11.4.6 Gainp. 443
11.4.7 Frequency Responsep. 445
11.4.8 Phase Lagp. 448
11.4.9 Summaryp. 450
11.5 Types of Servo Systemsp. 450
11.5.1 Hydromechanical Servo Systemp. 450
11.5.2 Electrohydraulic Servo Systemsp. 451
11.6 Servo Amplifiersp. 457
11.7 Servo Analysisp. 459
11.7.1 Open-Loop Gainp. 463
11.7.2 Natural Frequencyp. 463
11.7.3 Error Termsp. 471
11.7.4 Introduction to the Laplace Domainp. 474
11.8 Summaryp. 480
12. Proportional Valvesp. 487
12.1 Introductionp. 487
12.2 Types of Proportional Valvesp. 487
12.2.1 Force-Controlled Proportional Valvesp. 488
12.2.2 Summaryp. 497
12.2.3 Stroke-Controlled Proportional Valvesp. 497
12.3 Analysis of Proportional Directional Control Valvep. 499
12.3.1 Overrunning Loadp. 501
12.3.2 Resistive Loadp. 507
12.3.3 How a Proportional Direction Control Valve Functions in a Circuitp. 510
12.4 Comparison of Servo and Proportional Valvesp. 513
12.5 Summaryp. 514
A12.1 Summary of Equationsp. 517
Indexp. 521
Go to:Top of Page