Skip to:Content
|
Bottom
Cover image for Bioinformatics : genes, proteins and computers
Title:
Bioinformatics : genes, proteins and computers
Publication Information:
Oxford : BIOS Scientific Pub., 2003
ISBN:
9781859960547

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010042749 QH323.5 B56 2003 Open Access Book Book
Searching...
Searching...
30000010179278 QH323.5 B56 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Bioinformatics, the use of computers to address biological questions, has become an essential tool in biological research. It is one of the critical keys needed to unlock the information encoded in the flood of data generated by genome, protein structure, transcriptome and proteome research.
Bioinformatics: Genes, Proteins & Computers covers both the more traditional approaches to bioinformatics, including gene and protein sequence analysis and structure prediction, and more recent technologies such as datamining of transcriptomic and proteomic data to provide insights on cellular mechanisms and the causes of disease.


Table of Contents

Professor Janet ThorntonSylvia NaglJohn G. Sgouros and Richard M. TwymanChristine OrengoWilliam S.J. Valdar and David T. JonesSylvia B. NaglIan Sillitoe and Christine OrengoFrances Pearl and Christine OrengoAndrew C.R. MartinDavid T. JonesAnnabel E. ToddSarah A. TeichmannSarah A. TeichmannRichard M. JacksonPaul Kellam and Xiaohui LiuXiaohui Liu and Paul KellamMalcolm P. Weir and Walter P. Blackstock and Richard M. TwymanNigel J. MartinAndrew C.R. Martin
Abbreviationsp. ix
Contributorsp. xi
Forewordp. xiii
1. Molecular evolutionp. 1
Molecular evolution is a fundamental part of bioinformaticsp. 1
Evolution of protein familiesp. 9
Outlook: Evolution takes place at all levels of biological organizationp. 15
2. Gene findingp. 19
Conceptsp. 19
Finding genes in bacterial genomesp. 20
Finding genes in higher eukaryotesp. 21
Detecting non-coding RNA genesp. 27
3. Sequence comparison methodsp. 29
Conceptsp. 29
Data resourcesp. 30
Algorithms for pairwise sequence comparisonp. 32
Fast database search methodsp. 38
Assessing the statistical significance of sequence similarityp. 42
Intermediate sequence searchingp. 44
Validation of sequence alignment methods by structural datap. 44
Multiple sequence alignmentp. 45
4. Amino acid residue conservationp. 49
Conceptsp. 49
Models of molecular evolutionp. 49
Substitution matricesp. 50
Scoring residue conservationp. 57
Methods for scoring conservationp. 59
Insights and conclusionsp. 64
5. Function prediction from protein sequencep. 65
Overviewp. 65
The similar sequence-similar structure-similar function paradigmp. 65
Functional annotation of biological sequencesp. 66
Outlook: context-dependence of protein functionp. 77
6. Protein structure comparisonp. 81
Conceptsp. 81
Data resourcesp. 84
Algorithmsp. 84
Statistical methods for assessing structural similarityp. 99
Multiple structure comparison and 3-D templates for structural familiesp. 100
Conclusionsp. 101
7. Protein structure classificationsp. 103
Conceptsp. 103
Data resourcesp. 104
Protocols used in classifying structuresp. 104
Descriptions of the structural classification hierarchyp. 111
Overview of the populations in the different structural classifications and insights provided by the classificationsp. 118
8. Comparative modelingp. 121
Conceptsp. 121
Why do comparative modeling?p. 121
Experimental methodsp. 123
Evaluation of model qualityp. 131
Factors influencing model qualityp. 132
Insights and conclusionsp. 133
9. Protein structure predictionp. 135
Conceptsp. 135
Strategies for protein structure predictionp. 135
Secondary structure predictionp. 138
Fold recognition methodsp. 145
Ab initio prediction methodsp. 149
Critically assessing protein structure predictionp. 149
Conclusionsp. 150
10. From protein structure to functionp. 151
Introductionp. 151
What is function?p. 152
Challenges of inferring function from structurep. 152
Methods of functional evolutionp. 152
Functional classificationsp. 154
From structure to functionp. 156
Evolution of protein function from a structural perspectivep. 164
Structural genomicsp. 171
Conclusionsp. 174
11. From structure-based genome annotation to understanding genes and proteinsp. 175
Conceptsp. 175
Computational structural genomics: structural assignment of genome sequencesp. 175
Methods and data resources for computational structural genomicsp. 176
Proteome and protein evolution by computational structural genomicsp. 181
Evolution of enzymes and metabolic pathways by structural annotation of genomesp. 186
Summary and outlookp. 191
12. Global approaches for studying protein-protein interactionsp. 193
Conceptsp. 193
Protein-protein interactionsp. 193
Experimental approaches for large-scale determination of protein-protein interactionsp. 195
Structural analyses of domain interactionsp. 196
The use of gene order to predict protein-protein interactionsp. 198
The use of phylogeny to predict protein-protein interactionsp. 200
Summary and outlookp. 200
13. Predicting the structure of protein-biomolecular interactionsp. 203
Conceptsp. 203
Why predict molecular interactions?p. 203
Practical considerationsp. 204
Molecular complementarityp. 204
The search problemp. 209
Conformational flexibilityp. 211
Evaluation of modelsp. 214
Visualization methodsp. 215
14. Experimental use of DNA arraysp. 217
Conceptsp. 217
Methods for large-scale analysis of gene expressionp. 218
Using microarraysp. 219
Properties and processing of array datap. 221
Data normalizationp. 223
Microarray standards and databasesp. 226
15. Mining gene expression datap. 229
Conceptsp. 229
Data mining methods for gene expression analysisp. 230
Clusteringp. 231
Classificationp. 241
Conclusion and future researchp. 244
16. Proteomicsp. 245
The proteomep. 245
Proteomicsp. 246
Technology platforms in proteomicsp. 246
Case studiesp. 254
Summaryp. 257
17. Data managament of biological informationp. 259
Conceptsp. 259
Data management conceptsp. 260
Data management techniquesp. 263
Challenges arising from biological datap. 270
Conclusionsp. 271
18. Internet technologies for bioinformaticsp. 273
Conceptsp. 273
Methods and standardsp. 274
Insights and conclusionsp. 281
Glossaryp. 283
Indexp. 293
Go to:Top of Page