Skip to:Content
|
Bottom
Cover image for Wireless ad hoc and sensor networks : a cross-layer design perspective
Title:
Wireless ad hoc and sensor networks : a cross-layer design perspective
Personal Author:
Series:
Signals and communication technology
Publication Information:
New York, NY : Springer Science + Business Media, 2007
ISBN:
9780387390222
General Note:
Also available online version
Electronic Access:
Full Text
DSP_RESTRICTION_NOTE:
Accessible within UTM campus

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010139660 TK5103.2 J87 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Wireless Ad Hoc and Sensor Networks: A Cross-Layer Design Perspective deals with the emerging design trend that transcends traditional communication layers for performance gains in ad hoc and sensor networks. The author explores the current state of the art in cross-layer approaches for ad hoc and sensor networks, providing a comprehensive design resource.

The book offers a structured comparison and analysis of both layered and cross-layer design, providing readers with an overview of the many issues relating to ad hoc and sensor networks. The benefits of these cross-layer approaches are examined through three diverse case studies: a monitoring sensor network using Radio Frequency waves, an ad hoc network that uses Ultra Wide Band Radio, and an acoustic underwater sensor network for environmental monitoring.

Wireless Ad Hoc and Sensor Networks: A Cross-Layer Design Perspective is interdisciplinary in character, and should be of value to software engineers, hardware engineers, application developers, network protocol designers, graduate students, communication engineers, systems engineers, and university professors.


Table of Contents

1 Ad Hoc and Sensor Networks: Opportunities and Challengesp. 1
Part I Layered Communication Approaches
2 Physical Layerp. 7
2.1 Communication Mediap. 8
2.1.1 Wired Communicationp. 8
2.1.2 Wireless Communicationp. 9
2.2 Communication Technologiesp. 10
2.2.1 Point-to-Point Communication Technologiesp. 10
2.2.2 Broadcast Communication Technologiesp. 11
2.3 Physical Layer Optimization Parametersp. 13
2.3.1 Transmission Powerp. 13
2.3.2 Processing Powerp. 13
2.3.3 Sensing Powerp. 14
2.3.4 Signal-to-Noise Ratiop. 14
2.3.5 Transmission Ratep. 14
2.3.6 Modulation Code and Ratep. 15
3 Data Link Layerp. 17
3.1 Introductionp. 18
3.1.1 Protocol Overviewp. 18
3.2 Channel Separation and Accessp. 20
3.2.1 Single Channelp. 20
3.2.2 Multiple Channelsp. 24
3.2.3 Channel Separation and Access Summaryp. 29
3.3 Transmission Initiationp. 29
3.3.1 Sender-Initiatedp. 29
3.3.2 Receiver-Initiatedp. 30
3.3.3 Transmission Initiation Summaryp. 30
3.4 Topologyp. 31
3.4.1 Single Hop Flat Topologyp. 31
3.4.2 Multiple Hop Flat Topologyp. 32
3.4.3 Clustered Topologyp. 33
3.4.4 Centralized Topologyp. 34
3.4.5 Topology Summaryp. 35
3.5 Powerp. 35
3.5.1 Transmit Power Controlp. 35
3.5.2 Sleep Modep. 36
3.5.3 Battery Level Awarenessp. 37
3.5.4 Reduced Control Overheadp. 38
3.5.5 Savings for Particular Settingsp. 38
3.5.6 Increased Control Overheadp. 39
3.5.7 Power Summaryp. 39
3.6 Traffic Load and Scalabilityp. 40
3.6.1 Highly Loaded Networksp. 40
3.6.2 Dense Networksp. 41
3.6.3 Voice and Real-Time Trafficp. 41
3.6.4 Unattended Long-Term Operationp. 42
3.6.5 More Selective Scenariosp. 42
3.6.6 Traffic Load and Scalability Summaryp. 43
3.7 Logical Link Controlp. 43
3.8 Conclusion and Discussionp. 44
4 Network Layerp. 45
4.1 Route State Disseminationp. 47
4.1.1 Proactive Routing Protocolsp. 47
4.1.2 Reactivep. 50
4.1.3 Hybridp. 53
4.2 Topologyp. 54
4.2.1 Single Hop and Centralized Topologiesp. 54
4.2.2 Multiple Hop Flat Topologyp. 55
4.2.3 Clustered Topologyp. 55
4.2.4 Multilevel Hierarchical Networksp. 57
4.3 Multipath Routingp. 58
4.4 Power-awarenessp. 59
4.5 Geographical Routingp. 61
4.6 Quality-of-Servicep. 62
5 Transport and Middleware Layersp. 65
5.1 Transport Layerp. 66
5.1.1 TCP and UDPp. 66
5.1.2 Ad Hoc Network Transport Protocolsp. 68
5.1.3 Sensor Network Transport Protocolsp. 70
5.2 Middlewarep. 72
5.2.1 Middleware for Ad Hoc Networksp. 73
5.2.2 Middleware for Sensor Networksp. 74
6 Application Layerp. 77
6.1 Ad Hoc Networksp. 77
6.1.1 Ad Hoc Network Application Classesp. 77
6.1.2 Application Performance Metricsp. 79
6.2 Sensor Networksp. 82
6.2.1 Data Disseminationp. 82
6.2.2 Application Performance Metricsp. 84
Part II Cross-Layer Approaches
7 Cross-Layer Designp. 89
7.1 Cross-Layer Design: A Definitionp. 89
7.2 Cross-Layer Design for Traditional Networksp. 91
7.3 Why Cross-Layer Design for Ad Hoc and Sensor Networks?p. 92
7.3.1 An Analogyp. 92
7.3.2 Motivating Factorsp. 93
7.3.3 Design Challengesp. 96
7.4 Cross-Layer Design Guidelinesp. 97
7.4.1 Compatibilityp. 97
7.4.2 Richer Interactionsp. 98
7.4.3 Flexible and Tunablep. 98
8 Cross-Layer Architecturesp. 101
8.1 Ad Hoc Networksp. 101
8.1.1 MobileManp. 102
8.1.2 CrossTalkp. 103
8.2 Sensor Networksp. 104
8.2.1 Sensor Protocolp. 105
8.2.2 TinyCubusp. 106
8.2.3 Lup. 107
8.3 Ad Hoc and Sensor Networksp. 108
8.3.1 Jurdakp. 108
9 Applied Cross-Layer Approachesp. 111
9.1 Design Coupling Approachesp. 112
9.1.1 Girici and Ephremidesp. 112
9.1.2 Cruz and Santhanamp. 115
9.1.3 ElBatt and Ephremidesp. 116
9.1.4 Kozatp. 117
9.1.5 Lu and Krishnamacharip. 119
9.1.6 Madanp. 120
9.1.7 Cuip. 122
9.1.8 Wang and Karp. 123
9.1.9 Merzp. 124
9.2 Information Sharing Approachesp. 125
9.2.1 Sichitiup. 126
9.2.2 Chenp. 128
9.2.3 Sensor Protocolp. 130
9.2.4 Jurdakp. 131
9.3 Global Performance Goalsp. 134
9.3.1 Maximize Network Lifetimep. 134
9.3.2 Energy Efficiencyp. 135
9.3.3 Maximize Throughputp. 137
9.3.4 Minimize Delayp. 138
9.3.5 Promote Fairnessp. 138
9.3.6 Data Accessibilityp. 139
9.3.7 Efficiency and Generalityp. 139
9.4 Target Networksp. 140
9.4.1 Ad Hoc Networksp. 140
9.4.2 Sensor Networksp. 142
9.5 Input Aspectsp. 143
9.5.1 Application Layerp. 144
9.5.2 Middleware Layerp. 144
9.5.3 Transport Layerp. 144
9.5.4 Network Layerp. 145
9.5.5 Data Link Layerp. 146
9.5.6 Physical Layerp. 146
9.6 Configuration Optimizationsp. 148
9.6.1 Middlewarep. 148
9.6.2 Transport Layerp. 149
9.6.3 Network Layerp. 149
9.6.4 Data Link Layerp. 150
9.6.5 Physical Layerp. 150
9.7 Implementationp. 151
9.7.1 Unspecifiedp. 151
9.7.2 Centralizedp. 152
9.7.3 Distributedp. 153
9.8 Conclusionp. 153
Part III Case Studies
10 Optimization of an RF Sensor Networkp. 157
10.1 Introductionp. 157
10.2 Related Workp. 160
10.2.1 Cost Optimizationp. 160
10.2.2 Energy Efficiencyp. 160
10.3 Adaptive Low Power Listeningp. 162
10.3.1 Adaptive Low Power Listeningp. 162
10.3.2 Node Collaborationp. 163
10.3.3 State Representationsp. 165
10.3.4 Cost Functionp. 167
10.3.5 Routing Modificationsp. 170
10.4 Qualitative Analysisp. 170
10.4.1 Topologyp. 171
10.4.2 Case Studyp. 172
10.4.3 Duty Cyclep. 175
10.4.4 Rolep. 176
10.5 Deployment Resultsp. 176
10.5.1 Time-Driven Sensor Networkp. 177
10.5.2 Event-Driven Sensor Networkp. 181
10.6 Discussionp. 186
11 UWB Ad Hoc Networkp. 189
11.1 Introductionp. 190
11.2 UWB Network Principlesp. 192
11.2.1 UWB Principlesp. 192
11.2.2 UWB Traffic Classesp. 193
11.3 U-MAC Protocolp. 194
11.3.1 Problem Definitionp. 194
11.3.2 Protocol Overviewp. 195
11.3.3 Topologyp. 197
11.3.4 Hello Messagesp. 197
11.3.5 Rate and Power Assignmentp. 199
11.3.6 MSI Marginp. 204
11.4 Simulation and Resultsp. 205
11.4.1 Simulation Parametersp. 206
11.4.2 Resultsp. 207
11.5 Discussion and Conclusionp. 214
12 Acoustic Underwater Sensor Networkp. 217
12.1 Introductionp. 217
12.2 Relatedp. 219
12.3 Network Battery Life Estimation Methodp. 220
12.3.1 Network Design Parametersp. 221
12.3.2 Underwater Acoustics Fundamentalsp. 224
12.3.3 Data Deliveryp. 226
12.3.4 Network Lifetime and Power Consumptionp. 227
12.4 Topology-Dependent Optimizationsp. 228
12.4.1 Required Modificationsp. 229
12.5 Performance Evaluationp. 229
12.5.1 Tier-Independent Methodp. 230
12.5.2 Tier-Dependent Assignmentsp. 231
12.5.3 Grid Topologyp. 233
12.6 Discussionp. 237
12.6.1 Maximum Range Alternativesp. 237
12.6.2 Method Tradeoffsp. 237
12.6.3 Grid Topologyp. 237
12.6.4 Self-Recharging Sensorsp. 238
12.6.5 Method Applicabilityp. 238
Concluding Remarks and Future Directionsp. 241
Extended Cost Functionp. 243
Referencesp. 247
Indexp. 261
Go to:Top of Page