Cover image for Manipulating quantum structures using laser pulses
Title:
Manipulating quantum structures using laser pulses
Personal Author:
Publication Information:
Cambridge, UK ; New York : Cambridge University Press, 2011
Physical Description:
xiii, 572 p. : ill. ; 26 cm.
ISBN:
9780521763578

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010317706 QC794.6.E9 S56 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

The use of laser pulses to alter the internal quantum structure of individual atoms and molecules has applications in quantum information processing, the coherent control of chemical reactions and in quantum-state engineering. This book presents the underlying theory of such quantum-state manipulation for researchers and graduate students. The book provides the equations, and approaches for their solution, which can be applied to complicated multilevel quantum systems. It also gives the background theory for application to isolated atoms or trapped ions, simple molecules and atoms embedded in solids. Particular attention is given to the ways in which quantum changes can be displayed graphically to help readers understand how quantum changes can be controlled.


Author Notes

Bruce W. Shore worked as a theoretical physicist at the Lawrence Livermore National Laboratory for 30 years. His research dealt with numerical analysis and atomic physics, specializing in the theory of laser-induced atomic-vapor excitation.


Table of Contents

Prefacep. xi
Acknowledgmentsp. xiii
1 Introductionp. 1
1.1 Objectivep. 1
1.2 Backgroundp. 1
1.3 Measurables, observables, and parametersp. 2
1.4 Notation and nomenclaturep. 5
1.5 Limitations of the theoryp. 7
1.6 Basic referencesp. 8
2 Atoms as structured particlesp. 9
2.1 Spectroscopyp. 10
2.2 Quantum statesp. 13
2.3 Probabilitiesp. 15
3 Radiationp. 19
3.1 Thermal radiation; quantap. 19
3.2 Cavitiesp. 20
3.3 Incoherent radiationp. 21
3.4 Laser radiationp. 22
3.5 Laser fieldsp. 23
3.6 Field vectorsp. 31
3.7 Laser beamsp. 40
3.8 Photonsp. 41
3.9 Field restrictionsp. 43
4 The laser-atom interactionp. 44
4.1 Individual atomsp. 44
4.2 Detecting excitationp. 50
4.3 The interaction energy; multipole momentsp. 52
4.4 Moving atomsp. 54
5 Picturing quantum structure and changesp. 57
5.1 Free electrons: Ponderomotive energyp. 57
5.2 Picturing bound electronsp. 58
5.3 The Lorentz forcep. 61
5.4 The wavefunction; orbitalsp. 62
5.5 The statevector; Hilbert spacesp. 66
5.6 Two-state Hilbert spacesp. 69
5.7 Time-dependent statevectorsp. 73
5.8 Picturing quantum transitionsp. 76
6 Incoherence: Rate equationsp. 78
6.1 Thermalized atoms; the Boltzmann equationp. 78
6.2 The radiative rate equationsp. 79
6.3 The Einstein ratesp. 79
6.4 The two-state rate equationsp. 81
6.5 Solutions to the rate equationsp. 81
6.6 Commentsp. 83
7 Coherence: The Schrödinger equationp. 85
7.1 Essential states; effective Hamiltoniansp. 87
7.2 The coupled differential equationsp. 88
7.3 Classes of interactionp. 93
7.4 Classes of solutionsp. 93
7.5 The time-evolution matrix; transition probabilitiesp. 95
8 Two-state coherent excitationp. 97
8.1 The basic equationsp. 97
8.2 Abrupt startp. 104
8.3 The rotating-wave approximation (RWA)p. 108
8.4 Adiabatic time evolutionp. 118
8.5 Comparison of excitation methodsp. 135
9 Weak pulse: Perturbation theoryp. 137
9.1 Weak resonant excitationp. 138
9.2 Pulse aftermath and frequency contentp. 138
9.3 Example: Excitation despite missing frequenciesp. 139
9.4 The Dirac (interaction) picturep. 141
9.5 Weak broadband radiation; transition ratesp. 142
9.6 Fermi's famous Golden Rulep. 144
10 The vector modelp. 146
10.1 The Feynman-Vernon-Hellwarth equationsp. 146
10.2 Coherence loss; relaxationp. 150
11 Sequential pulsesp. 159
11.1 Contiguous pulsesp. 159
11.2 Pulse trainsp. 160
11.3 Examplesp. 162
11.4 Pulse pairsp. 163
11.5 Vector picture of pulse pairsp. 165
11.6 Creating dressed statesp. 167
11.7 Zero-area pulsesp. 168
12 Degeneracyp. 171
12.1 Zeeman sublevelsp. 171
12.2 Radiation polarization and selection rulesp. 172
12.3 The RWA with degeneracyp. 177
12.4 Optical pumpingp. 179
12.5 General angular momentump. 181
13 Three statesp. 186
13.1 Three-state linkagesp. 186
13.2 The three-state RWAp. 188
13.3 Resonant chainsp. 197
13.4 Detuningp. 201
13.5 Unequal Rabi frequenciesp. 211
13.6 Laser-induced continuum structure (LICS)p. 218
14 Raman processesp. 222
14.1 The Raman Hamiltonianp. 222
14.2 Population transferp. 223
14.3 Explaining STIRAPp. 230
14.4 Demonstrating STIRAPp. 235
14.5 Optimizing STIRAP pulsesp. 237
14.6 Two-state versions of STIRAPp. 239
14.7 Extending STIRAPp. 243
15 Multilevel excitationp. 253
15.1 Multiphoton and multiple-photon ionizationp. 253
15.2 Coherent excitation of JV-state systemsp. 255
15.3 Chainsp. 259
15.4 Branchesp. 277
15.5 Loopsp. 287
15.6 Multilevel adiabatic time evolutionp. 292
16 Averages and the statistical matrix (density matrix)p. 299
16.1 Ensembles and expectation valuesp. 299
16.2 Statistical averagesp. 300
16.3 Environmental averagesp. 302
16.4 Expectation valuesp. 304
16.5 Uncertainty relationsp. 307
16.6 The density matrixp. 308
16.7 Density matrix equation of motionp. 313
16.8 Incorporating incoherent processesp. 317
16.9 Rotating coordinatesp. 321
16.10 Multilevel generalizationsp. 324
17 Systems with partsp. 331
17.1 Separability and factorizationp. 331
17.2 Center of mass motionp. 333
17.3 Two partsp. 338
17.4 Correlation and entanglementp. 343
18 Preparing superpositionsp. 347
18.1 Superposition constructionp. 347
18.2 Nondegenerate statesp. 348
18.3 Degenerate discrete statesp. 350
18.4 Transferring superpositionsp. 351
18.5 State manipulations using Householder reflectionsp. 352
19 Measuring superpositionsp. 357
19.1 General remarksp. 357
19.2 Spin matrices and quantum tomographyp. 359
19.3 Two-state superpositionsp. 362
19.4 Analyzing multistate superpositionsp. 364
19.5 Analyzing three-state superpositionsp. 366
19.6 Alternative proceduresp. 368
20 Overall phase; interferometry and cyclic dynamicsp. 370
20.1 Hilbert-space raysp. 371
20.2 Parallel transportp. 372
20.3 Phase definitionp. 373
20.4 Michelson interferometryp. 374
20.5 Alternative interferometryp. 377
20.6 Ramsey interferometryp. 378
20.7 Cyclic systemsp. 379
21 Atoms affecting fieldsp. 387
21.1 Induced dipole moments; propagationp. 387
21.2 Single field, N= 2p. 389
21.3 Multiple fieldsp. 402
21.4 Two or three fields, N = 3p. 403
21.5 Four fields, N = 4; four-wave mixingp. 410
21.6 Steady state; susceptibilityp. 413
22 Atoms in cavitiesp. 419
22.1 The cavityp. 420
22.2 Two-state atoms in a cavityp. 423
22.3 Three-state atoms in a cavityp. 429
23 Control and optimizationp. 435
23.1 Control theoryp. 435
23.2 Quantum controlp. 436
23.3 Optimizationp. 439
Appendix A Angular momentump. 442
A.1 Angular momentum statesp. 442
A.2 Angular momentum couplingp. 451
A.3 Hyperfine linkagesp. 456
Appendix B The multipole interactionp. 459
B.1 The bound-particle interactionp. 459
B.2 The multipole momentsp. 462
B.3 Examplesp. 464
B.4 Induced momentsp. 464
B.5 Irreducible tensor formp. 465
B.6 Rabi frequenciesp. 465
B.7 Angular momentum selection rulesp. 466
Appendix C Classical radiationp. 468
C.1 The Lorentz force; Maxwell's equationsp. 468
C.2 Wave equationsp. 470
C.3 Frequency componentsp. 476
C.4 The influence of matterp. 480
C.5 Pulse-mode expansionsp. 482
Appendix D Quantized radiationp. 487
D.1 Field quantizationp. 488
D.2 Mode fieldsp. 496
D.3 Photon statesp. 505
D.4 The free-field radiation Hamiltonianp. 507
D.5 Interpretation of photonsp. 509
Appendix E Adiabatic statesp. 513
E.1 Terminologyp. 513
E.2 Adiabatic evolutionp. 515
E.3 The Dykhne-Davis-Pechukas (DDP) formulap. 519
Appendix F Dark states; the Morris-Shore transformationp. 522
F.1 The Morris-Shore transformationp. 522
F.2 Bright and dark statesp. 524
F.3 Fan linkagesp. 526
F.4 Chain linkagesp. 526
F.5 Generalizationsp. 527
Appendix G Near-periodic excitation; Floquet theoryp. 528
G.1 Floquet's theoremp. 528
G.2 Example: Two statesp. 530
G.3 Floquet theory and the RWAp. 531
G.4 Floquet theory and the Jaynes-Cummings modelp. 531
G.5 Near-periodic excitation; adiabatic Floquet theoryp. 532
G.6 Example: Two statesp. 534
G.7 Adiabatic Floquet energy surfacesp. 536
Appendix H Transitions; spectroscopic parametersp. 537
H.1 Spectroscopic parametersp. 537
H.2 Relative transition strengthsp. 538
Referencesp. 542
Indexp. 565