Cover image for Datums and map projections for remote sensing, GIS and surveying
Title:
Datums and map projections for remote sensing, GIS and surveying
Personal Author:
Edition:
2nd ed.
Publication Information:
Dunbeath, Caithness : Whittles Pub. ; Boca Raton, FL : : CRC Press, 2008
Physical Description:
ix, 208 p. : ill. (some col.), maps (chiefly col.) ; 24 cm.
ISBN:
9781420070415
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010345193 G109 I45 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

A practical guide to coordinate reference systems, Datums and Map Projections: For Remote Sensing, GIS and Surveying has become a key book for many students and professionals around the world. While retaining the benefits of the first edition - clear presentation assuming no prior knowledge, a problem-solving approach, practical examples and the combination of GPS-derived data from other sources - the rewritten and expanded second edition includes a revised structure that better groups common themes, greater scope and coverage of all possible types of coordinate reference systems, more examples and case studies from around the world, terminology of the ISO 1911, and color illustrations.


Table of Contents

Prefacep. ix
Chapter 1 Introductionp. 1
1.1 The contextp. 1
1.2 Introduction to the concepts and the structure of this bookp. 2
Chapter 2 Coordinates and reference systemsp. 8
2.1 The Earth - geoid and ellipsoidp. 8
2.1.1 The geoidp. 8
2.1.2 Models of the shape of the Earth - the ellipsoidp. 8
2.2 Coordinate systemsp. 11
2.2.1 Coordinate system attributesp. 11
2.2.2 Coordinate systems for the sphere and ellipsoidp. 12
2.2.3 Geocentric Cartesian coordinatesp. 14
2.2.4 Conversion between ellipsoidal and geocentric Cartesian coordinatesp. 15
2.2.5 Map projection coordinatesp. 16
2.2.6 Cartesian coordinates for engineering applicationsp. 17
2.2.7 Gravity-related systems (height and depth)p. 18
2.2.8 Miscellaneous coordinate systemsp. 19
2.3 Datums and coordinate reference systemsp. 20
2.3.1 Datum overview and classificationp. 20
2.3.2 Geodetic datums and coordinate reference systemsp. 20
2.3.3 Projected coordinate reference systemsp. 28
2.3.4 Vertical systemsp. 29
2.3.5 Engineering datums and coordinate reference systemsp. 35
2.3.6 Image datums and coordinate reference systemsp. 35
2.4 Compound coordinate reference systemsp. 36
2.5 Coordinate reference system identificationp. 36
2.5.1 CRS descriptionp. 36
2.5.2 Registers of coordinate reference systemsp. 38
Chapter 3 Map Projectionsp. 39
3.1 Introductionp. 39
3.2 Map projections: fundamental conceptsp. 40
3.2.1 Grids and graticulesp. 40
3.2.2 Scale factorp. 40
3.2.3 Developable surfacesp. 42
3.2.4 Preserved featuresp. 44
3.2.5 Spheres and ellipsoidsp. 46
3.3 Cylindrical projectionsp. 48
3.3.1 Cylindrical equidistantp. 48
3.3.2 Cylindrical equal areap. 51
3.3.3 The Mercator projectionp. 53
3.3.4 Transverse Mercatorp. 55
3.3.5 South-oriented Transverse Mercatorp. 61
3.3.6 Oblique Mercatorp. 61
3.4 Azimuthal projectionsp. 63
3.4.1 General azimuthalp. 63
3.4.2 Azimuthal equidistantp. 63
3.4.3 Azimuthal equal areap. 64
3.4.4 Stereographicp. 66
3.4.5 Gnomonicp. 69
3.4.6 Azimuthal orthographicp. 70
3.4.7 Azimuthal perspective projectionp. 70
3.5 Conic projectionsp. 73
3.5.1 General conicp. 73
3.5.2 Conic equidistantp. 75
3.5.3 Albers equal areap. 75
3.5.4 Lambert Conformal Conicp. 77
3.5.5 Oblique conicp. 79
3.6 Non-geometric projection methodsp. 80
3.7 Summary of information requiredp. 83
3.7.1 Map projection method formulaep. 83
3.7.2 Map projection parameter valuesp. 84
3.8 Computations within map projectionsp. 86
3.9 Designing a map projectionp. 89
Chapter 4 Transformationsp. 90
4.1 Introductionp. 90
4.2 General characteristics of transformationsp. 91
4.2.1 Transformations and conversionsp. 91
4.2.2 Transformation multiplicityp. 91
4.2.3 Transformation accuracyp. 92
4.2.4 Transformation reversibilityp. 93
4.3 Transformations between geocentric coordinate reference systemsp. 93
4.3.1 Introductionp. 93
4.3.2 Three parameter geocentric transformationp. 94
4.3.3 Seven parameter geocentric transformationp. 95
4.3.4 Ten parameter geocentric transformationp. 98
4.4 Transformations between geographic coordinate reference systemsp. 100
4.4.1 Introductionp. 101
4.4.2 Molodensky and Abridged Molodenskyp. 101
4.4.3 Geographic offsetsp. 102
4.4.4 Grid interpolation - NTv2 and NADCONp. 104
4.4.5 Indirect transformation between geographic coordinate reference systemsp. 106
4.5 Transformation of 2D plane coordinatesp. 109
4.5.1 Introductionp. 109
4.5.2 Compatibility of coordinate reference systemsp. 110
4.5.3 Similarity transformation methodp. 113
4.5.4 Affine transformationp. 115
4.5.5 Polynomialsp. 117
4.5.6 Creating overlays in Google Earthp. 118
4.5.7 Transformation of GPS data onto a local site gridp. 120
4.5.8 Indirect transformations between projected coordinatesp. 122
4.6 Coordinate operations for vertical coordinate reference systemsp. 123
4.6.1 Introductionp. 123
4.6.2 Vertical offsetsp. 124
4.6.3 The hub conceptp. 127
4.7 Transformation between ellipsoidal and gravity-related heightsp. 128
4.7.1 Geoid modelsp. 128
4.7.2 Height correction modelsp. 129
4.7.3 Transformations involving compound coordinate reference systems (CRSs)p. 130
4.8 Selecting a transformationp. 131
4.8.1 Introductionp. 131
4.8.2 Officially sanctioned transformationsp. 132
4.8.3 Selecting from a transformation repositoryp. 132
4.9 Deriving your own transformationp. 134
4.9.1 Introductionp. 134
4.9.2 Choice of transformation methodp. 134
4.9.3 Availability of control pointsp. 135
4.9.4 Geometric issuesp. 136
4.9.5 Effect of ignoring geoid-ellipsoid separationp. 137
4.9.6 Evaluating results of the transformationp. 140
Chapter 5 Global Navigation Satellite Systemsp. 141
5.1 Introductionp. 141
5.2 The systemsp. 141
5.3 Positioning with codesp. 143
5.4 Differential GNSS and augmentation systemsp. 146
5.5 GNSS measurements using phase observationsp. 148
5.6 Coordinate reference system considerationsp. 152
Chapter 6 Case Studiesp. 154
6.1 Transformation of GPS data into a local coordinate reference systemp. 154
6.2 Creation of a three-parameter geocentric transformation from an official national transformationp. 160
6.3 Designing a map projectionp. 162
6.4 Calculations using map grid coordinatesp. 164
6.5 Creating overlays in Google Earthp. 172
Appendix A Terminologyp. 176
Appendix B Computations with spherical coordinatesp. 181
Appendix C Basic geometry of the ellipsoidp. 182
C.1 Introductionp. 182
C.2 Radii of curvature of the ellipsoidp. 182
C.3 Normal sections and geodesicsp. 182
C.4 Forward computation of coordinatesp. 184
C.5 Reverse computation of azimuthp. 184
C.6 Determination of points on the geodesicp. 185
Appendix D The Molodensky equationsp. 186
Appendix E Determination of transformation parameter values by least squaresp. 187
E.1 Introduction and least squares terminologyp. 187
E.2 Two dimensional transformations of Cartesian coordinatesp. 189
E.2.1 The Similarity transformationp. 189
E.2.2 The affine transformationp. 192
E.2.3 Second order polynomialsp. 193
E.3 Three-dimensional transformations of Cartesian coordinatesp. 194
E.3.1 The seven-parameter transformationp. 194
E.3.2 The ten-parameter geocentric transformationp. 196
E.3.3 Subsets of the seven-parameter geocentric transformationp. 196
E.4 Worked examplep. 197
References & Further Readingp. 200
Indexp. 203