Skip to:Content
|
Bottom
Cover image for Differentiable periodic maps
Title:
Differentiable periodic maps
Series:
Lecture notes in mathematics ; 738
Edition:
2nd ed
Publication Information:
Berlin : Springer-Verlag, 1979
ISBN:
9780387095356

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000001905730 QA613.7 C65 1979 Open Access Book Book
Searching...

On Order

Summary

Summary

MEMS Vibratory Gyroscopes provides a solid foundation in the theory and fundamental operational principles of micromachined vibratory rate gyroscopes, and introduces structural designs that provide inherent robustness against structural and environmental variations. In the first part, the dynamics of the vibratory gyroscope sensing element is developed, common micro-fabrication processes and methods commonly used in inertial sensor production are summarized, design of mechanical structures for both linear and torsional gyroscopes are presented, and electrical actuation and detection methods are discussed along with details on experimental characterization of MEMS gyroscopes. In the second part, design concepts that improve robustness of the micromachined sensing element are introduced, supported by constructive computational examples and experimental results illustrating the material.


Table of Contents

Part I Fundamentals of Micromachined Vibratory Gyroscopes
1 Introductionp. 3
1.1 The Coriolis Effectp. 3
1.2 Gyroscopesp. 4
1.3 The MEMS Technologyp. 5
1.4 Micromachined Vibratory Rate Gyroscopesp. 6
1.5 Applications of MEMS Gyroscopesp. 8
1.6 Gyroscope Performance Specificationsp. 8
1.7 A Survey of Prior Work on MEMS Gyroscopesp. 10
1.8 The Robustness Challengep. 14
1.9 Inherently Robust Systemsp. 15
1.10 Overviewp. 16
2 Fundamentals of Micromachined Gyroscopesp. 17
2.1 Dynamics of Vibratory Rate Gyroscopesp. 17
2.1.1 Linear Gyroscope Dynamicsp. 17
2.1.2 Torsional Gyroscope Dynamicsp. 22
2.2 Resonance Characteristicsp. 25
2.3 Drive-Mode Operationp. 28
2.4 The Coriolis Responsep. 29
2.4.1 Mode-Matching and [delta]fp. 32
2.4.2 Phase Relations and Proof-Mass Trajectoryp. 36
2.5 Summaryp. 42
3 Fabrication Technologiesp. 43
3.1 Microfabrication Techniquesp. 43
3.1.1 Photolithographyp. 44
3.1.2 Depositionp. 46
3.1.3 Etchingp. 48
3.1.4 Wafer Bondingp. 51
3.2 Bulk Micromachining Processesp. 52
3.2.1 SOI-Based Bulk Micromachiningp. 53
3.2.2 Silicon-on-Glass Bulk Micromachiningp. 56
3.3 Surface-Micromachining Processesp. 59
3.4 Combined Surface-Bulk Micromachiningp. 63
3.5 CMOS Integrationp. 64
3.5.1 Hybrid Integrationp. 64
3.5.2 Monolithic Integrationp. 65
3.6 Packagingp. 67
3.6.1 Wafer-Level Packagingp. 68
3.6.2 Vacuum Packagingp. 69
3.7 Summaryp. 71
4 Mechanical Design of MEMS Gyroscopesp. 73
4.1 Mechanical Structure Designsp. 73
4.2 Linear Vibratory Systemsp. 74
4.2.1 Linear Suspension Systemsp. 75
4.2.2 Linear Flexure Elementsp. 83
4.3 Torsional Vibratory Systemsp. 87
4.3.1 Torsional Suspension Systemsp. 88
4.3.2 Torsional Flexure Elementsp. 90
4.4 Anisoelasticity and Quadrature Errorp. 93
4.4.1 Quadrature Compensationp. 100
4.5 Dampingp. 102
4.5.1 Viscous Dampingp. 102
4.5.2 Viscous Anisodampingp. 104
4.5.3 Intrinsic Structural Dampingp. 105
4.6 Material Properties of Siliconp. 107
4.7 Design for Robustnessp. 108
4.7.1 Yieldp. 108
4.7.2 Vibration Immunityp. 109
4.7.3 Shock Resistancep. 109
4.7.4 Temperature Effectsp. 109
4.8 Summaryp. 110
5 Electrical Design of MEMS Gyroscopesp. 111
5.1 Introductionp. 111
5.2 Basics of Capacitive Electrodesp. 111
5.3 Electrostatic Actuationp. 113
5.3.1 Variable-Gap Actuatorsp. 113
5.3.2 Variable-Area Actuatorsp. 114
5.3.3 Balanced Actuationp. 116
5.4 Capacitive Detectionp. 117
5.4.1 Variable-Gap Capacitorsp. 117
5.4.2 Variable-Area Capacitorsp. 118
5.4.3 Differential Sensingp. 119
5.5 Capacitance Enhancementp. 120
5.5.1 Gap Reduction by Fabricationp. 121
5.5.2 Post-Fabrication Capacitance Enhancementp. 122
5.6 MEMS Gyroscope Testing and Characterizationp. 124
5.6.1 Frequency Response Extractionp. 125
5.6.2 Capacitive Sense-Mode Detection Circuitsp. 133
5.6.3 Rate-Table Characterizationp. 138
5.7 Summaryp. 139
Part II Structural Approaches to Improve Robustness
6 Linear Multi-DOF Architecturep. 143
6.1 Introductionp. 143
6.2 Fundamentals of 2-DOF Oscillatorsp. 144
6.3 The 2-DOF Sense-Mode Architecturep. 149
6.3.1 Gyroscope Dynamicsp. 150
6.3.2 Coriolis Responsep. 151
6.3.3 Illustrative Examplep. 155
6.3.4 Conclusions on the 2-DOF Sense-Mode Architecturep. 157
6.4 The 2-DOF Drive-Mode Architecturep. 158
6.4.1 Gyroscope Dynamicsp. 159
6.4.2 Dynamical Amplification in the Drive-Modep. 162
6.4.3 Illustrative Examplep. 163
6.4.4 Conclusions on the 2-DOF Drive-Mode Architecturep. 165
6.5 The 4-DOF System Architecturep. 166
6.5.1 The Coriolis Responsep. 169
6.5.2 Dynamics of the 4-DOF Gyroscopep. 170
6.5.3 Parameter Optimizationp. 172
6.5.4 Illustrative Examplep. 177
6.5.5 Conclusions on the 4-DOF System Architecturep. 179
6.6 Demonstration of 2-DOF Oscillator Robustnessp. 180
6.7 Summaryp. 185
7 Torsional Multi-DOF Architecturep. 187
7.1 Introductionp. 187
7.2 Torsional 3-DOF Gyroscope Structure and Theory of Operationp. 189
7.2.1 The Coriolis Responsep. 191
7.2.2 Gyroscope Dynamicsp. 192
7.2.3 Cross-Axis Sensitivityp. 194
7.3 Illustration of a MEMS Implementationp. 195
7.3.1 Suspension Designp. 195
7.3.2 Finite Element Analysisp. 197
7.3.3 Electrostatic Actuationp. 198
7.3.4 Optimization of System Parametersp. 199
7.3.5 Sensitivity and Robustness Analysesp. 200
7.4 Experimental Characterizationp. 201
7.5 Summaryp. 206
8 Distributed-Mass Architecturep. 207
8.1 Introductionp. 207
8.2 The Approachp. 207
8.2.1 The Coriolis Responsep. 210
8.2.2 Wide-Bandwidth Operation for Improving Robustnessp. 211
8.3 Theoretical Analysis of the Trade-offsp. 213
8.4 Illustrative Examplep. 215
8.4.1 Prototype Designp. 215
8.4.2 Experimental Characterization Resultsp. 217
8.5 Summaryp. 224
9 Conclusions and Future Trendsp. 225
9.1 Introductionp. 225
9.2 Comparative Analysis of the Presented Conceptsp. 226
9.2.1 2-DOF Oscillator in the Sense-Modep. 226
9.2.2 2-DOF Oscillator in the Drive-Modep. 226
9.2.3 Multiple Drive-Mode Oscillatorsp. 227
9.3 Demonstration of Improved Robustnessp. 227
9.3.1 Temperature Dependence of Drive and Sense-Modesp. 228
9.3.2 Rate-Table Characterization Resultsp. 229
9.3.3 Comparison of Response with a Conventional Gyroscopep. 231
9.4 Scale Factor Trade-off Analysisp. 232
9.5 Future Trendsp. 236
9.5.1 Anti-Phase 2-DOF Sense Mode Gyroscopep. 237
9.5.2 2-DOF Sense Mode Gyroscope with Scalable Peak Spacingp. 242
9.6 Conclusionp. 245
Referencesp. 247
Indexp. 255
Go to:Top of Page