Skip to:Content
|
Bottom
Cover image for Mathematics for physics and physicists
Title:
Mathematics for physics and physicists
Personal Author:
Publication Information:
Princeton, NJ : Princeton University Press, 2007
ISBN:
9780691131023

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010155364 QC20 A66 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

What can a physicist gain by studying mathematics? By gathering together everything a physicist needs to know about mathematics in one comprehensive and accessible guide, this is the question Mathematics for Physics and Physicists successfully takes on.


The author, Walter Appel, is a renowned mathematics educator hailing from one of the best schools of France's prestigious Grandes écoles, where he has taught some of his country's leading scientists and engineers. In this unique book, oriented specifically toward physicists, Appel shows graduate students and researchers the vital benefits of integrating mathematics into their study and experience of the physical world. His approach is mathematically rigorous yet refreshingly straightforward, teaching all the math a physicist needs to know above the undergraduate level. Appel details numerous topics from the frontiers of modern physics and mathematics--such as convergence, Green functions, complex analysis, Fourier series and Fourier transform, tensors, and probability theory--consistently partnering clear explanations with cogent examples. For every mathematical concept presented, the relevant physical application is discussed, and exercises are provided to help readers quickly familiarize themselves with a wide array of mathematical tools.



Mathematics for Physics and Physicists is the resource today's physicists must have to strengthen their math skills and to gain otherwise unattainable insights into their fields of study.


Author Notes

Walter Appel taught mathematics for physics for seven years at the Ecole Normale Superieure de Lyon in France and currently teaches mathematics at the Henri Poincare School


Reviews 1

Choice Review

The majority of applied mathematical fields presently require so much specialization that mathematics often takes a back seat to the particular field of study. This book not only contains a great deal of the mathematics necessary to seriously study physics but also encourages physicists and potential physicists to embrace mathematics. From knowing mathematics, physicists "will gain access to new intuitions." Many great physicists, including Galileo, Newton, and Feynman, are excellent examples of those who gained immense insight from the study of mathematics, which enabled them to obtain important results in physics. Mathematical topics here include calculus, measure theory, complex analysis, distributions, Fourier and Laplace transforms, group representations, and probability theory. Appel (Henri Poincare School) compiled this book based on his experience of some seven years teaching mathematics to physicists. His underlying premise is that in order for physicists to attain insights into solving physics problems, they must continue to strengthen their mathematics skills. A comprehensive guide to mathematics essential to physics, the book is neither too imprecise nor too specialized to be used as a course resource. Summing Up: Recommended. Upper-division undergraduates through faculty. J. T. Zerger Catawba College


Table of Contents

A book's apologyp. xviii
Index of notationp. xxii
1 Reminders: convergence of sequences and seriesp. 1
1.1 The problem of limits in physicsp. 1
1.1.a Two paradoxes involving kinetic energyp. 1
1.1.b Romeo, Juliet, and viscous fluidsp. 5
1.1.c Potential wall in quantum mechanicsp. 7
1.1.d Semi-infinite filter behaving as waveguidep. 9
1.2 Sequencesp. 12
1.2.a Sequences in a normed vector spacep. 12
1.2.b Cauchy sequencesp. 13
1.2.c The fixed point theoremp. 15
1.2.d Double sequencesp. 16
1.2.e Sequential definition of the limit of a functionp. 17
1.2.f Sequences of functionsp. 18
1.3 Seriesp. 23
1.3.a Series in a normed vector spacep. 23
1.3.b Doubly infinite seriesp. 24
1.3.c Convergence of a double seriesp. 25
1.3.d Conditionally convergent series, absolutely convergent seriesp. 26
1.3.e Series of functionsp. 29
1.4 Power series, analytic functionsp. 30
1.4.a Taylor formulasp. 31
1.4.b Some numerical illustrationsp. 32
1.4.c Radius of convergence of a power seriesp. 34
1.4.d Analytic functionsp. 35
1.5 A quick look at asymptotic and divergent seriesp. 37
1.5.a Asymptotic seriesp. 37
1.5.b Divergent series and asymptotic expansionsp. 38
Exercisesp. 43
Problemp. 46
Solutionsp. 47
2 Measure theory and the Lebesgue integralp. 51
2.1 The integral according to Mr. Riemannp. 51
2.1.a Riemann sumsp. 51
2.1.b Limitations of Riemann's definitionp. 54
2.2 The integral according to Mr. Lebesguep. 54
2.2.a Principle of the methodp. 55
2.2.b Borel subsetsp. 56
2.2.c Lebesgue measurep. 58
2.2.d The Lebesgue [sigma]-algebrap. 59
2.2.e Negligible setsp. 61
2.2.f Lebesgue measure on R[superscript n]p. 62
2.2.g Definition of the Lebesgue integralp. 62
2.2.h Functions zero almost everywhere, space L[superscript 1]p. 66
2.2.i And today?p. 67
Exercisesp. 68
Solutionsp. 71
3 Integral calculusp. 73
3.1 Integrability in practicep. 73
3.1.a Standard functionsp. 73
3.1.b Comparison theoremsp. 74
3.2 Exchanging integrals and limits or seriesp. 75
3.3 Integrals with parametersp. 77
3.3.a Continuity of functions defined by integralsp. 77
3.3.b Differentiating under the integral signp. 78
3.3.c Case of parameters appearing in the integration rangep. 78
3.4 Double and multiple integralsp. 79
3.5 Change of variablesp. 81
Exercisesp. 83
Solutionsp. 85
4 Complex Analysis Ip. 87
4.1 Holomorphic functionsp. 87
4.1.a Definitionsp. 88
4.1.b Examplesp. 90
4.1.c The operators [part]/[part]z and [part]/[part]zp. 91
4.2 Cauchy's theoremp. 93
4.2.a Path integrationp. 93
4.2.b Integrals along a circlep. 95
4.2.C Winding numberp. 96
4.2.d Various forms of Cauchy's theoremp. 96
4.2.e Applicationp. 99
4.3 Properties of holomorphic functionsp. 99
4.3.a The Cauchy formula and applicationsp. 99
4.3.b Maximum modulus principlep. 104
4.3.c Other theoremsp. 105
4.3.d Classification of zero sets of holomorphic functionsp. 106
4.4 Singularities of a functionp. 108
4.4.a Classification of singularitiesp. 108
4.4.b Meromorphic functionsp. 110
4.5 Laurent seriesp. 111
4.5.a Introduction and definitionp. 111
4.5.b Examples of Laurent seriesp. 113
4.5.c The Residue theoremp. 114
4.5.d Practical computations of residuesp. 116
4.6 Applications to the computation of horrifying integrals or ghastly sumsp. 117
4.6.a Jordan's lemmasp. 117
4.6.b Integrals on R of a rational functionp. 118
4.6.c Fourier integralsp. 120
4.6.d Integral on the unit circle of a rational functionp. 121
4.6.e Computation of infinite sumsp. 122
Exercisesp. 125
Problemp. 128
Solutionsp. 129
5 Complex Analysis IIp. 135
5.1 Complex logarithm; multivalued functionsp. 135
5.1.a The complex logarithmsp. 135
5.1.b The square root functionp. 137
5.1.c Multivalued functions, Riemann surfacesp. 137
5.2 Harmonic functionsp. 139
5.2.a Definitionsp. 139
5.2.b Propertiesp. 140
5.2.c A trick to find f knowing up. 142
5.3 Analytic continuationp. 144
5.4 Singularities at infinityp. 146
5.5 The saddle point methodp. 148
5.5.a The general saddle point methodp. 149
5.5.b The real saddle point methodp. 152
Exercisesp. 153
Solutionsp. 154
6 Conformal mapsp. 155
6.1 Conformal mapsp. 155
6.1.a Preliminariesp. 155
6.1.b The Riemann mapping theoremp. 157
6.1.c Examples of conformal mapsp. 158
6.1.d The Schwarz-Christoffel transformationp. 161
6.2 Applications to potential theoryp. 163
6.2.a Application to electrostaticsp. 165
6.2.b Application to hydrodynamicsp. 167
6.2.c Potential theory, lightning rods, and percolationp. 169
6.3 Dirichlet problem and Poisson kernelp. 170
Exercisesp. 174
Solutionsp. 176
7 Distributions Ip. 179
7.1 Physical approachp. 179
7.1.a The problem of distribution of chargep. 179
7.1.b The problem of momentum and forces during an elastic shockp. 181
7.2 Definitions and examples of distributionsp. 182
7.2.a Regular distributionsp. 184
7.2.b Singular distributionsp. 185
7.2.c Support of a distributionp. 187
7.2.d Other examplesp. 187
7.3 Elementary properties. Operationsp. 188
7.3.a Operations on distributionsp. 188
7.3.b Derivative of a distributionp. 191
7.4 Dirac and its derivativesp. 193
7.4.a The Heaviside distributionp. 193
7.4.b Multidimensionai Dirac distributionsp. 194
7.4.c The distribution [delta]'p. 196
7.4.d Composition of [delta] with a functionp. 198
7.4.e Charge and current densitiesp. 199
7.5 Derivation of a discontinuous functionp. 201
7.5.a Derivation of a function discontinuous at a pointp. 201
7.5.b Derivative of a function with discontinuity along a surface Lp. 204
7.5.c Laplacian of a function discontinuous along a surface Lp. 206
7.5.d Application: laplacian of 1/r in 3-spacep. 207
7.6 Convolutionp. 209
7.6.a The tensor product of two functionsp. 209
7.6.b The tensor product of distributionsp. 209
7.6.c Convolution of two functionsp. 211
7.6.d "Fuzzy" measurementp. 213
7.6.e Convolution of distributionsp. 214
7.6.f Applicationsp. 215
7.6.g The Poisson equationp. 216
7.7 Physical interpretation of convolution operatorsp. 217
7.8 Discrete convolutionp. 220
8 Distributions IIp. 223
8.1 Cauchy principal valuep. 223
8.1.a Definitionp. 223
8.1.b Application to the computation of certain integralsp. 224
8.1.c Feynman's notationp. 225
8.1.d Kramers-Kronig relationsp. 227
8.1.e A few equations in the sense of distributionsp. 229
8.2 Topology D'p. 230
8.2.a Weak convergence in D'p. 230
8.2.b Sequences of functions converging to [delta]p. 231
8.2.c Convergence in D' and convergence in the sense of functionsp. 234
8.2.d Regularization of a distributionp. 234
8.2.e Continuity of convolutionp. 235
8.3 Convolution algebrasp. 236
8.4 Solving a differential equation with initial conditionsp. 238
8.4.a First order equationsp. 238
8.4.b The case of the harmonic oscillatorp. 239
8.4.c Other equations of physical originp. 240
Exercisesp. 241
Problemp. 244
Solutionsp. 245
9 Hilbert spaces; Fourier seriesp. 249
9.1 Insufficiency of vector spacesp. 249
9.2 Pre-Hilbert spacesp. 251
9.2.a The finite-dimensional casep. 254
9.2.b Projection on a finite-dimensional subspacep. 254
9.2.c Bessel inequalityp. 256
9.3 Hilbert spacesp. 256
9.3.a Hilbert basisp. 257
9.3.b The [ell superscript 2] spacep. 261
9.3.c The space L[superscript 2] [0,a]p. 262
9.3.d The L[superscript 2](R) spacep. 263
9.4 Fourier series expansionp. 264
9.4.a Fourier coefficients of a functionp. 264
9.4.b Mean-square convergencep. 265
9.4.c Fourier series of a function f [Element] L[superscript 1] [0,a]p. 266
9.4.d Pointwise convergence of the Fourier seriesp. 267
9.4.e Uniform convergence of the Fourier seriesp. 269
9.4.f The Gibbs phenomenonp. 270
Exercisesp. 270
Problemp. 271
Solutionsp. 272
10 Fourier transform of functionsp. 277
10.1 Fourier transform of a function in L[superscript 1]p. 277
10.1.a Definitionp. 278
10.1.b Examplesp. 279
10.1.c The L[superscript 1] spacep. 279
10.1.d Elementary propertiesp. 280
10.1.e Inversionp. 282
10.1.f Extension of the inversion formulap. 284
10.2 Properties of the Fourier transformp. 285
10.2.a Transpose and translatesp. 285
10.2.b Dilationp. 286
10.2.c Derivationp. 286
10.2.d Rapidly decaying functionsp. 288
10.3 Fourier transform of a function in L[superscript 2]p. 288
10.3.a The space Lp. 289
10.3.b The Fourier transform in L[superscript 2]p. 290
10.4 Fourier transform and convolutionp. 292
10.4.a Convolution formulap. 292
10.4.b Cases of the convolution formulap. 293
Exercisesp. 295
Solutionsp. 296
11 Fourier transform of distributionsp. 299
11.1 Definition and propertiesp. 299
11.1.a Tempered distributionsp. 300
11.1.b Fourier transform of tempered distributionsp. 301
11.1.c Examplesp. 303
11.1.d Higher-dimensional Fourier transformsp. 305
11.1.e Inversion formulap. 306
11.2 The Dirac combp. 307
11.2.a Definition and propertiesp. 307
11.2.b Fourier transform of a periodic functionp. 308
11.2.c Poisson summation formulap. 309
11.2.d Application to the computation of seriesp. 310
11.3 The Gibbs phenomenonp. 311
11.4 Application to physical opticsp. 314
11.4.a Link between diaphragm and diffraction figurep. 314
11.4.b Diaphragm made of infinitely many infinitely narrow slitsp. 315
11.4.c Finite number of infinitely narrow slitsp. 316
11.4.d Finitely many slits with finite widthp. 318
11.4.e Circular lensp. 320
11.5 Limitations of Fourier analysis and waveletsp. 321
Exercisesp. 324
Problemp. 325
Solutionsp. 326
12 The Laplace transformp. 331
12.1 Definition and integrabilityp. 331
12.1.a Definitionp. 332
12.1.b Integrabilityp. 333
12.1.c Properties of the Laplace transformp. 336
12.2 Inversionp. 336
12.3 Elementary properties and examples of Laplace transformsp. 338
12.3.a Translationp. 338
12.3.b Convolutionp. 339
12.3.c Differentiation and integrationp. 339
12.3.d Examplesp. 341
12.4 Laplace transform of distributionsp. 342
12.4.a Definitionp. 342
12.4.b Propertiesp. 342
12.4.c Examplesp. 344
12.4.d The z-transformp. 344
12.4.e Relation between Laplace and Fourier transformsp. 345
12.5 Physical applications, the Cauchy problemp. 346
12.5.a Importance of the Cauchy problemp. 346
12.5.b A simple examplep. 347
12.5.c Dynamics of the electromagnetic field without sourcesp. 348
Exercisesp. 351
Solutionsp. 352
13 Physical applications of the Fourier transformp. 355
13.1 Justification of sinusoidal regime analysisp. 355
13.2 Fourier transform of vector fields: longitudinal and transverse fieldsp. 358
13.3 Heisenberg uncertainty relationsp. 359
13.4 Analytic signalsp. 365
13.5 Autocorrelation of a finite energy functionp. 368
13.5.a Definitionp. 368
13.5.b Propertiesp. 368
13.5.c Intercorrelationp. 369
13.6 Finite power functionsp. 370
13.6.a Definitionsp. 370
13.6.b Autocorrelationp. 370
13.7 Application to optics: the Wiener-Khintchine theoremp. 371
Exercisesp. 375
Solutionsp. 376
14 Bras, kets, and all that sort of thingp. 377
14.1 Reminders about finite dimensionp. 377
14.1.a Scalar product and representation theoremp. 377
14.1.b Adjointp. 378
14.1.c Symmetric and hermitian endomorphismsp. 379
14.2 Kets and brasp. 379
14.2.a Kets [Characters not reproducible] [Element] Hp. 379
14.2.b Bras [Characters not reproducible] [Element] H'p. 380
14.2.c Generalized brasp. 382
14.2.d Generalized ketsp. 383
14.2.e Id = [Sigma subscript n] | [phi subscript n]>p. 384
14.2.f Generalized basisp. 385
14.3 Linear operatorsp. 387
14.3.a Operatorsp. 387
14.3.b Adjointp. 389
14.3.c Bounded operators, closed operators, closable operatorsp. 390
14.3.d Discrete and continuous spectrap. 391
14.4 Hermitian operators; self-adjoint operatorsp. 393
14.4.a Definitionsp. 394
14.4.b Eigenvectorsp. 396
14.4.c Generalized eigenvectorsp. 397
14.4.d "Matrix" representationp. 398
14.4.e Summary of properties of the operators P and Xp. 401
Exercisesp. 403
Solutionsp. 404
15 Green functionsp. 407
15.1 Generalities about Green functionsp. 407
15.2 A pedagogical example: the harmonic oscillatorp. 409
15.2.a Using the Laplace transformp. 410
15.2.b Using the Fourier transformp. 410
15.3 Electromagnetism and the d'Alembertian operatorp. 414
15.3.a Computation of the advanced and retarded Green functionsp. 414
15.3.b Retarded potentialsp. 418
15.3.c Covariant expression of advanced and retarded Green functionsp. 421
15.3.d Radiationp. 421
15.4 The heat equationp. 422
15.4.a One-dimensional casep. 423
15.4.b Three-dimensional casep. 426
15.5 Quantum mechanicsp. 427
15.6 Klein-Gordon equationp. 429
Exercisesp. 432
16 Tensorsp. 433
16.1 Tensors in affine spacep. 433
16.1.a Vectorsp. 433
16.1.b Einstein conventionp. 435
16.1.c Linear formsp. 436
16.1.d Linear mapsp. 438
16.1.e Lorentz transformationsp. 439
16.2 Tensor product of vector spaces: tensorsp. 439
16.2.a Existence of the tensor product of two vector spacesp. 439
16.2.b Tensor product of linear forms: tensors of type [Characters not reproducible]p. 441
16.2.c Tensor product of vectors: tensors of type [Characters not reproducible]p. 443
16.2.d Tensor product of a vector and a linear form: linear maps or [Characters not reproducible]-tensorsp. 444
16.2.e Tensors of type [Characters not reproducible]p. 446
16.3 The metric, or, how to raise and lower indicesp. 447
16.3.a Metric and pseudo-metricp. 447
16.3.b Natural duality by means of the metricp. 449
16.3.c Gymnastics: raising and lowering indicesp. 450
16.4 Operations on tensorsp. 453
16.5 Change of coordinatesp. 455
16.5.a Curvilinear coordinatesp. 455
16.5.b Basis vectorsp. 456
16.5.c Transformation of physical quantitiesp. 458
16.5.d Transformation of linear formsp. 459
16.5.e Transformation of an arbitrary tensor fieldp. 460
16.5.f Conclusionp. 461
Solutionsp. 462
17 Differential formsp. 463
17.1 Exterior algebrap. 463
17.1.a 1-formsp. 463
17.1.b Exterior 2-formsp. 464
17.1.c Exterior k-formsp. 465
17.1.d Exterior productp. 467
17.2 Differential forms on a vector spacep. 469
17.2.a Definitionp. 469
17.2.b Exterior derivativep. 470
17.3 Integration of differential formsp. 471
17.4 Poincare's theoremp. 474
17.5 Relations with vector calculus: gradient, divergence, curlp. 476
17.5.a Differential forms in dimension 3p. 476
17.5.b Existence of the scalar electrostatic potentialp. 477
17.5.c Existence of the vector potentialp. 479
17.5.d Magnetic monopolesp. 480
17.6 Electromagnetism in the language of differential formsp. 480
Problemp. 484
Solutionp. 485
18 Groups and group representationsp. 489
18.1 Groupsp. 489
18.2 Linear representations of groupsp. 491
18.3 Vectors and the group SO(3)p. 492
18.4 The group SU(2) and spinorsp. 497
18.5 Spin and Riemann spherep. 503
Exercisesp. 505
19 Introduction to probability theoryp. 509
19.1 Introductionp. 510
19.2 Basic definitionsp. 512
19.3 Poincare formulap. 516
19.4 Conditional probabilityp. 517
19.5 Independent eventsp. 519
20 Random variablesp. 521
20.1 Random variables and probability distributionsp. 521
20.2 Distribution function and probability densityp. 524
20.2.a Discrete random variablesp. 526
20.2.b (Absolutely) continuous random variablesp. 526
20.3 Expectation and variancep. 527
20.3.a Case of a discrete r.v.p. 527
20.3.b Case of a continuous r.v.p. 528
20.4 An example: the Poisson distributionp. 530
20.4.a Particles in a confined gasp. 530
20.4.b Radioactive decayp. 531
20.5 Moments of a random variablep. 532
20.6 Random vectorsp. 534
20.6.a Pair of random variablesp. 534
20.6.b Independent random variablesp. 537
20.6.c Random vectorsp. 538
20.7 Image measuresp. 539
20.7.a Case of a single random variablep. 539
20.7.b Case of a random vectorp. 540
20.8 Expectation and characteristic functionp. 540
20.8.a Expectation of a function of random variablesp. 540
20.8.b Moments, variancep. 541
20.8.c Characteristic functionp. 541
20.8.d Generating functionp. 543
20.9 Sum and product of random variablesp. 543
20.9.a Sum of random variablesp. 543
20.9.b Product of random variablesp. 546
20.9.c Example: Poisson distributionp. 547
20.10 Bienayme-Tchebychev inequalityp. 547\
20.10.a Statementp. 547
20.10.b Application: Buffon's needlep. 549
20.11 Independance, correlation, causalityp. 550
21 Convergence of random variables: central limit theoremp. 553
21.1 Various types of convergencep. 553
21.2 The law of large numbersp. 555
21.3 Central limit theoremp. 556
Exercisesp. 560
Problemsp. 563
Solutionsp. 564
Appendices
A Reminders concerning topology and normed vector spacesp. 573
A.1 Topology, topological spacesp. 573
A.2 Normed vector spacesp. 577
A.2.a Norms, seminormsp. 577
A.2.b Balls and topology associated to the distancep. 578
A.2.c Comparison of sequencesp. 580
A.2.d Bolzano-Weierstrass theoremsp. 581
A.2.e Comparison of normsp. 581
A.2.f Norm of a linear mapp. 583
Exercisep. 583
Solutionp. 584
B Elementary reminders of differential calculusp. 585
B.1 Differential of a real-valued functionp. 585
B.1.a Functions of one real variablep. 585
B.1.b Differential of a function f : R[superscript n] [right arrow] Rp. 586
B.1.c Tensor notationp. 587
B.2 Differential of map with values in R[superscript p]p. 587
B.3 Lagrange multipliersp. 588
Solutionp. 591
C Matricesp. 593
C.1 Dualityp. 593
C.2 Application to matrix representationp. 594
C.2.a Matrix representing a family of vectorsp. 594
C.2.b Matrix of a linear mapp. 594
C.2.c Change of basisp. 595
C.2.d Change of basis formulap. 595
C.2.e Case of an orthonormal basisp. 596
D A few proofsp. 597
Tables
Fourier transformsp. 609
Laplace transformsp. 613
Probability lawsp. 616
Further readingp. 617
Referencesp. 621
Portraitsp. 627
Sidebarsp. 629
Indexp. 631
Go to:Top of Page